From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

Edi Kissling: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Edi Kissling
Address
Seismologie und Geodynamik
ETH Zürich, NO H 53.2
Sonneggstrasse 5
8092 Zürich
SWITZERLAND
E-mailkissling@tomo.ig.erdw.ethz.ch
DepartmentEarth Sciences
RelationshipRetired Adjunct Professor

NumberTitleECTSHoursLecturers
651-3001-AALDynamic Earth I and II Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
11 credits24RE. Kissling, M. Schönbächler
AbstractProvides a basic introduction into Earth Sciences, emphasizing different rock-types and the geological rock-cycle, as well as introduction into geophysics and plate tectonic theory.
ObjectiveUnderstanding basic geological and geophysical processes
ContentOverview of the Earth as a system, with emphasis on plate tectonic theory and the geological rock-cycle. Provides a basic introduction to crystals and minerals and different rock-types. Lectures include processes in the Earth's interior, physics of the earth, planetology, introduction to magmatic, metamorphic and sedimentary rocks. Excercises are conducted in small groups to provide more in depth understanding of concepts and content of the lectures.
Lecture noteswerden abgegeben.
LiteratureGrotzinger, J., Jordan, T.H., Press, F., Siever, R., 2007, Understanding Earth, W.H. Freeman & Co., New York, 5th Ed.
Press, F. Siever, R., Grotzinger, J. & Jordon, T.H., 2008, Allgemeine Geologie. Spektrum Akademischer Verlag, Heidelberg, 5.Auflage.
Prerequisites / NoticeExercises and short excursions in small groups (10-15 students) will be lead by student assistants. Specific topics in earth sciences will be discussed using examples and case studies. Hand samples of the major rock types will be described and interpreted. Short excursions in the region of Zurich will permit direct experience with earth science processes (e.g. earth surface processes) and recognition of earth science problems and solutions relevant for modern society (e.g. building materials, water resources). Working in small groups will allow for discussion and examination of actual earth science themes.
651-3001-00LDynamic Earth I6 credits4V + 2UG. Bernasconi-Green, E. Kissling, O. Bachmann, T. Kraft, M. Lupker, M. Schönbächler, S. Willett
AbstractProvides a basic introduction into Earth Sciences, emphasizing different rock-types and the geological rock-cycle, as well as introduction into geophysics and plate tectonic theory.
ObjectiveUnderstanding basic geological and geophysical processes
ContentOverview of the Earth as a system, with emphasis on plate tectonic theory and the geological rock-cycle. Provides a basic introduction to crystals and minerals and different rock-types. Lectures include processes in the Earth's interior, physics of the earth, planetology, introduction to magmatic, metamorphic and sedimentary rocks. Excercises are conducted in small groups to provide more in depth understanding of concepts and content of the lectures.
Lecture noteswerden abgegeben.
LiteratureGrotzinger, J., Jordan, T.H., Press, F., Siever, R., 2007, Understanding Earth, W.H. Freeman & Co., New York, 5th Ed.
Press, F. Siever, R., Grotzinger, J. & Jordon, T.H., 2008, Allgemeine Geologie. Spektrum Akademischer Verlag, Heidelberg, 5.Auflage.
Prerequisites / NoticeExercises and short excursions in small groups (10-15 students) will be lead by student assistants. Specific topics in earth sciences will be discussed using examples and case studies. Hand samples of the major rock types will be described and interpreted. Short excursions in the region of Zurich will permit direct experience with earth science processes (e.g. earth surface processes) and recognition of earth science problems and solutions relevant for modern society (e.g. building materials, water resources). Working in small groups will allow for discussion and examination of actual earth science themes.
651-3341-00LLithosphere Information
Prerequisite: successful completion of Dynamic Earth I and II is mandatory.

Course will no longer take place after HS16.
3 credits2VS. Wiemer, E. Kissling
AbstractComprehensive understanding of role and evolution of oceanic and continental lithosphere in global plate tectonics and evolution of earth. Understanding principles of theoretical and experimental geothermics and fundamentals of mantle and lithosphere rheologies.
ObjectiveComprehensive understanding of role and evolution of oceanic and continental lithosphere in global plate tectonics and evolution of earth. Understanding principles of theoretical and experimental geothermics and fundamentals of mantle and lithosphere rheologies.
ContentConcept of lithosphere-asthenosphere system in plate tectonics. Physics, chemistry, and rheology of crust and uppermost mantle. Thermal, chemical, and mechanical evolution and destruction/subduction of oceanic lithosphere and evolution of continents. Continental growth, example Europe. Fundamentals of rheology and geothermics of the mantle-lithosphere-crust system.
Lecture notesDetailed scriptum in digital form and additional learning moduls (www.lead.ethz.ch) available on intranet.
Literaturesee list in scriptum.
Prerequisites / NoticePPT-files of each lecture may be played back for rehearsal on www.lead.ethz.ch.
651-3521-AALTectonics
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RT. Gerya, E. Kissling
AbstractComprehensive understanding of role and evolution of oceanic and continental lithosphere in global plate tectonics and evolution of earth. Understanding principles of theoretical and experimental geothermics and fundamentals of mantle and lithosphere rheologies.
ObjectiveComprehensive understanding of role and evolution of oceanic and continental lithosphere in global plate tectonics and evolution of earth. Understanding principles of theoretical and experimental geothermics and fundamentals of mantle and lithosphere rheologies.
ContentConcept of lithosphere-asthenosphere system in plate tectonics. Physics, chemistry, and rheology of crust and uppermost mantle. Thermal, chemical, and mechanical evolution and destruction/subduction of oceanic lithosphere and evolution of continents. Continental growth, example Europe. Fundamentals of rheology and geothermics of the mantle-lithosphere-crust system.
Lecture notesDetailed scriptum in digital form and additional learning moduls (www.lead.ethz.ch) available on intranet.
Literaturesee list in scriptum.
Prerequisites / NoticePPT-files of each lecture may be played back for rehearsal on www.lead.ethz.ch.
651-3521-00LTectonics3 credits2VJ.‑P. Burg, E. Kissling
AbstractComprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.
ObjectiveComprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales.
Assessment of mechanisms responsible for plate movements (the Earth as a heat transfer machine, dynamics of earth mantle, plate driving forces) and subsequent large-scale structures (oceanic basins and cycle of the oceanic lithosphere, convergence and mountain systems and continental growth, etc) through theoretical and experimental information.
Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.
ContentPlate tectonic frame work: earth cooling and mantle-plate interaction, three kinds of plate boundaries and their roles and characteristics, cycle of oceanic lithosphere, longlifety and growth of continents, supercontinents.
Rheology of layered lithosphere and upper mantle.
Obduction systems
Collisions systems
Extensional systems
Basin evolution
Passive and active continental margin evolution
Lecture notesDetailed scriptum in digital form and additional learning moduls (www.lead.ethz.ch) available on the intranet.
LiteratureCondie, K. C. 1997. Plate tectonics and crustal evolution. Butterworth-Heinemann, Oxford.
Cox, A. & Hart, R. B. 1986. Plate tectonics. How it works. Blackwell Scientific Publications, Oxford.
Dewey, J. F. 1977. Suture zone complexities: A review. Tectonophysics 40, 53-67.
Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180.
Kearey, P. & Vine, F. J. 1990. Global tectonics. Blackwell Scientific Publications, Oxford.
Park, R. G. 1993. Geological structures and moving plates. Chapman & Hall, Glasgow.
Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge University Press, Cambridge.
Windley, B. F. 1995. The evolving continents. John Wiley & Sons Ltd, Chichester.
651-4014-00LSeismic Tomography3 credits2GE. Kissling, T. Diehl
AbstractSeismic tomography is the science of interpreting seismic measurements (seismograms) to derive information about the structure of the Earth. The subject of this course is the formal relationship existing between a seismic measurement and the nature of the Earth, or of certain regions of the Earth, and the ways to use it, to gain information about the Earth.
Objective
LiteratureAki, K. and P. G. Richards, Quantitative Seismology, second edition, University Science Books, Sausalito, 2002. The most standard textbook in seismology, for grad students and advanced undergraduates.
Dahlen, F. A. and J. Tromp, Theoretical Global Seismology, Princeton University Press, Princeton, 1998. A very good book, suited for advanced graduate students with a strong math background.
Kennett B.L.N., The Seismic Wavefield. Volume I: Introduction and Theoretical Development (2001). Volume II: Interpretation of Seismograms on Regional and Global Scales (2002). Cambridge University Press.
Lay, T. and T. C. Wallace, Modern Global Seismology, Academic Press, San Diego, 1995. A very basic seismology textbook. Chapters 2 through 4 provide a useful introduction to the contents of this course.
Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, revised edition, Academic Press, San Diego, 1989. A very complete textbook on inverse theory in geophysics.
Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes, Cambridge University Press. The art of scientific computing.
Trefethen, L. N. and D. Bau III, Numerical Linear Algebra, Soc. for Ind. and Appl. Math., Philadelphia, 1997. A textbook on the numerical solution of large linear inverse problems, designed for advanced math undergraduates.