Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

Hans Christian Öttinger: Katalogdaten im Herbstsemester 2018

NameHerr Prof. Dr. Hans Christian Öttinger
LehrgebietPolymerphysik
Adresse
Institut für Polymere
ETH Zürich, HCP F 47.2
Leopold-Ruzicka-Weg 4
8093 Zürich
SWITZERLAND
Telefon+41 44 632 46 33
Fax+41 44 632 10 76
E-Mailhco@mat.ethz.ch
URLhttp://www.polyphys.mat.ethz.ch
DepartementMaterialwissenschaft
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
327-0710-00LPolymer Physics Information Belegung eingeschränkt - Details anzeigen 0 KP2SH. C. Öttinger, M. Kröger
KurzbeschreibungGruppenseminar in Polymerphysik
LernzielVertiefte Aus- und Weiterbildung, insbesondere von Doktoranden, auf dem Gebiet der Polymerphysik
InhaltVorstellung und Diskussion neuester Forschungsarbeiten von Mitgliedern der Gruppe Polymerphysik und auswärtigen Vortragenden
SkriptKein Skript
Voraussetzungen / BesonderesLose Vortragsreihe (siehe Ankündigungen)
327-1201-00LTransport Phenomena I Information 5 KP4GH. C. Öttinger
KurzbeschreibungPhenomenological approach to "Transport Phenomena" based on balance equations supplemented by thermodynamic considerations to formulate the undetermined fluxes in the local species mass, momentum, and energy balance equations; fundamentals, applications, and simulations
LernzielThe teaching goals of this course are on five different levels:
(1) Deep understanding of fundamentals: local balance equations, constitutive equations for fluxes, entropy balance, interfaces, idea of dimensionless numbers, ...
(2) Ability to use the fundamental concepts in applications
(3) Insight into the role of boundary conditions
(4) Knowledge of a number of applications
(5) Flavor of numerical techniques: finite elements, finite differences, lattice Boltzmann, Brownian dynamics, ...
InhaltApproach to Transport Phenomena
Diffusion Equation
Brownian Dynamics
Refreshing Topics in Equilibrium Thermodynamics
Balance Equations
Forces and Fluxes
Measuring Transport Coefficients
Pressure-Driven Flows
Driven Separations
Complex Fluids
SkriptThe course is based on the book D. C. Venerus and H. C. Öttinger, A Modern Course in Transport Phenomena (Cambridge University Press, 2018)
Literatur1. D. C. Venerus and H. C. Öttinger, A Modern Course in Transport Phenomena (Cambridge University Press, 2018)
2. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd Ed. (Wiley, 2001)
3. S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, 2nd Ed. (Dover, 1984)
4. W. M. Deen, Analysis of Transport Phenomena (Oxford University Press, 1998)
5. R. B. Bird, Five Decades of Transport Phenomena (Review Article), AIChE J. 50 (2004) 273-287
Voraussetzungen / BesonderesComplex numbers. Vector analysis (integrability; Gauss' divergence theorem). Laplace and Fourier transforms. Ordinary differential equations (basic ideas). Linear algebra (matrices; functions of matrices; eigenvectors and eigenvalues; eigenfunctions). Probability theory (Gaussian distributions; Poisson distributions; averages; moments; variances; random variables). Numerical mathematics (integration). Equilibrium thermodynamics (Gibbs' fundamental equation; thermodynamic potentials; Legendre transforms). Maxwell equations. Programming and simulation techniques (Matlab, Monte Carlo simulations).