Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Bernhard Wehrli: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Bernhard Wehrli
FieldAquatische Chemie
Address
I. f. Biogeochemie/Schadstoffdyn.
ETH Zürich, CHN E 19.1
Universitätstrasse 16
8092 Zürich
SWITZERLAND
Telephone+41 44 632 85 05
E-mailbernhard.wehrli@env.ethz.ch
DepartmentEnvironmental Systems Science
RelationshipFull Professor

NumberTitleECTSHoursLecturers
529-0030-00LLaboratory Course: Elementary Chemical Techniques3 credits6PN. Kobert, M. Morbidelli, M. H. Schroth, B. Wehrli
AbstractThis practical course provides an introduction to elementary laboratory techniques.
The experiments cover a wide range of techniques, including analytical and synthetic techniques (e. g. investigation of soil and water samples or the preparation of simple compunds). Furthermore, the handling of gaseous substances is practised.
ObjectiveThis course is intended to provide an overview of experimental chemical methods.
The handling of chemicals and proper laboratory techniques represent the main
learning targets. Furthermore, the description and recording of laboratory processes is an essential part of this course.
ContentThe classification and analysis of natural and artificial compounds is a key subject of this
course. It provides an introduction to elementary laboratory techniques, and the experiments cover a wide range of analytic and synthetic tasks:
Selected samples (e.g. soil and water) will be analysed with various methods, such as titrations,
spectroscopy or ion chromatography. The chemistry of aqeous solutions (acid-base equilibria and solvatation or precipitation processes) is studied.
The synthesis of simple inorganic complexes or organic molecules is practised.
Furthermore, the preparation and handling of environmentally relevant gaseous species like carbon dioxide or nitrogen oxides is a central subject of the Praktikum.
Lecture notesThe script will be published on the web.
Details will be provided on the first day of the semester.
LiteratureA thorough study of all script materials is requested before the course starts.
701-0029-00LEnvironmental Systems II3 credits2VB. Wehrli, C. Garcia, M. Sonnevelt
AbstractThe lecture provides a science-based exploration of three important environmental systems: Inland waters, forest, and of food systems.
ObjectiveThe students are able to explain important functions of the three environmental systems, to discuss critical drivers, trends and conflicts of their use and to compare potential solutions.
ContentAquatic ecosystems and their function, water use and its impact, water pollution and water treatment, coping with floods and water scarcity.

Forests and agroforest systems, trends and drivers of land use changes, sustainable forest management.

The main functions, trends and challenges of agricultural and food systems are discussed based on the four dimensions of food security (availability, access, utilization of food and stability of the food systems).
Lecture notesLecture notes or other documentation are provided by instructors and accessible via moodle.
701-0216-00LBiogeochemical Cycles3 credits2GB. Wehrli
AbstractBiogeochemical cycles are discussed from global or regional perspectives, important methods to determine reaction rates and pathways are introduced and typical reaction mechansims are discussed at a molecular level.
ObjectiveThe students will be able to
* explain how molecular processes govern global biogeochemical cycles;
* apply simple numerical models of biogeochemical processes (equilibrium-, mass-balance, transport-reaction models);
* interpret concentration changes in time and space and deduce rates of biogeochemical processes.
ContentBiogeochemical cycles in aquatic systems will be discussed from three perspectives: 1) Case studies with a gloabal or regional point of view will document the relevant background information on rates, time-scales and reservoirs of selected element cycles such as C, N, P, S, Fe, Mn Cd, Cu, Mo and As. 2) From a practical perspective we will compare the potential and limits of different methods to quantify biogeochemical processes in aquatic systems. 3) On a molecular level we will discuss mechanisms and pathways of relevant reactions.
Lecture notesLecture notes and assignments will be available in German
LiteratureSimilar coverage of some topics: Steven R. Emerson, John I. Hedges: Chemical Oceanography and the Marine Carbon Cycle. Cambridge University Press 2008.
Prerequisites / NoticeBasic knowledge in chemistry and systems analysis
701-0419-01LSeminar for Bachelor Students: Biogeochemistry2 credits2SG. Furrer, R. Kretzschmar, B. Wehrli
AbstractThe seminar provides an introduction to the literature in biogeochemistry of aquatic and terrestrial systems. The students present their summary and review of recent or classical papers. Therefore they get familiar with online-access tools and improve their communication and presentation skills.
ObjectiveGetting to know relevant journals in the field of biogeochemistry. Reading, assessing and discussing scientific publications. Improving of presentation skills. Exercising and Improving of moderation skills.
ContentPart 1: Literature search. Presentation and moderation techniques.
Part 2: Common literature study; online-exchange of information. Presentation and discussion moderated by the students.
Lecture notesSelected handouts will be distributed in class.
https://moodle-app2.let.ethz.ch/auth/shibboleth/login.php
Prerequisites / NoticeDeadline for enrollment is the FIRST day of the semester. Later enrollment can only be accepted in exceptional cases and under certain conditions (e.g., restricted choice of topics and dates).
701-0901-00LETH Week 2016: Challenging Water Restricted registration - show details
All ETH Bachelor`s, Master`s students and exchange students can take part in the ETH week 2016.
Tuition, food and accommodation are free of charge.
1 creditR. Knutti, C. Bratrich, S. Brusoni, P. Burlando, A. Cabello Llamas, G. Folkers, D. Molnar, A. Vaterlaus, B. Wehrli
AbstractThe ETH Week is an innovative one-week course designed to foster critical thinking and creative learning. Students from all departments as well as professors and external experts will work together in interdisciplinary teams. They will develop interventions that could play a role in solving some of our most pressing global challenges. In 2016, ETH Week will focus on the topic of water.
Objective- Domain specific knowledge: Students have immersed knowledge about a certain complex, societal topic which will be selected every year They understand the complex system context of the current topic, by comprehending its scientific, technical, political, social, ecological and economic perspectives. The focus in 2016 is on challenging water systems.

- Analytical skills The ETH Week participants are able to structure complex problems systematically using selected methods. They are able to acquire further knowledge and to critically analyze the knowledge in interdisciplinary groups and with experts and the help of team tutors.

- Design skills: The students are able to use their knowledge and skills to develop concrete approaches for problem solving and decision making to a selected problem statement, critically reflect these approaches, assess their feasibility, to transfer them into a concrete form (physical model, prototypes, strategy paper,...) and to present this work in a creative way (role-plays, videos, exhibitions, etc.).

- Self-competence: The students are able to plan their work effectively, efficiently and autonomously. By considering approaches from different disciplines they are able to make a judgment and form a personal opinion. In exchange with non-academic partners from business, politics, administration, nongovernmental organizations and media they are able to communicate appropriately, present their results professionally and creatively and convince a critical audience.

- Social competence: The students are able to work in multidisciplinary teams, i.e. they can reflect critically their own discipline, debate with students from other disciplines and experts in a critical-constructive and respectful way and can relate their own positions to different intellectual approaches. They can assess how far they are able to actively make a contribution to society by using their personal and professional talents and skills and as "Change Agents".
ContentThe week is mainly about problem solving and design thinking applied to the complex world of water. During ETH Week students will have the opportunity to work in small interdisciplinary groups, allowing them to critically analyze both their own approaches and those of other disciplines, and to integrate these into their work.

While deepening their knowledge about how the food system works, students will be introduced to various methods and tools for generating creative ideas and understand how different people are affected by each part of the system. In addition to lectures and literature, students will acquire knowledge via excursions into the real world, empirical observations, and conversations with researchers and experts

A key attribute of the ETH Week is that students are expected to find their own problem, rather than just solve the problem that has been handed to them.
Therefore, the first three days of the week will concentrate on identifying a problem the individual teams will work on, while the last two days are focused on generating solutions and communicating the team's ideas.

A panel of experts will judge your presentations at the end of the week. The winning teams will receive attractive prizes.
Prerequisites / NoticeNo prerequisites. Program is open to Bachelor and Masters from all ETH Departments. All students must apply through a competitive application process that will open in March 2016 at www.ethz.ch/ETHWeek. Participation is subject to successful selection through this competitive process.
701-1302-00LTerm Paper 2: Seminar
Prerequisite: Term Paper 1: Writing (701-1303-00L).
2 credits1SM. H. Schroth, N. Gruber, J. Hering, R. Kretzschmar, M.  Lever, K. McNeill, D. Or, B. Wehrli, L. Winkel
AbstractThis class is the 2nd part of a series and participation is conditional on the successful completion of the Term paper Writing class (701-1303-00L). The results from the term paper written during the winter term are presented to the other students and advisors and discussed.
ObjectiveThe goal of the term paper Seminars is to train the student's ability to communicate the results to a wider audience and the ability to respond to questions and comments.
ContentEach student presents the results of the term paper to the other students and advisors and responds to questions and comments from the audience.
Lecture notesNone
LiteratureTerm paper
Prerequisites / NoticeThe term papers will be made publically available after each student had the opportunity to make revisions.

There is no final exam. Grade is assigned based on the quality of the presentation and ensuing discussion.
701-1303-00LTerm Paper 1: Writing Restricted registration - show details 5 credits6AM. H. Schroth, N. Gruber, J. Hering, R. Kretzschmar, M.  Lever, K. McNeill, D. Or, B. Wehrli, L. Winkel
AbstractThe ability to critically evaluate original (scientific) literature and to summarize the information in a succinct manner is an important skill for any student. This course aims to practise this ability, requiring each student to write a term paper on a topic of relevance for research in the areas of Biogeochemistry and Pollutant Dynamics.
ObjectiveThe goal of the term paper is to train the student's ability to
critically evaluate a well-defined set of research subjects, and to
summarize the findings concisely in a paper of scientific quality. The
paper will be evaluated based on its ability to communicate an
understanding of a topic, and to identify key outstanding questions.
Results from this term paper will be presented to the fellow students and
involved faculty in the following term (Term paper seminars class)
ContentEach student is expected to write a paper with a length of approximately 15 pages. The students can choose from a list of topics prepared by the supervisors, but the final topic will be determined based on a balance of choice and availability. The students will be guided and advised by their advisors throughout the term. The paper itself should contain the following elements: Motivation and context of the given topic (25%), Concise presentation of the state of the science (50%), Identification of open questions and perhaps outline of opportunities for research (25).
In addition, the accurate use of citations, attribution of ideas, and the judicious use of figures, tables, equations and references are critical components of a successful paper. Specialized knowledge is not expected, nor required, neither is new research.
Lecture notesGuidelines and supplementary material will be handed out at the beginning of the class.
LiteratureWill be identified based on the chosen topic.
Prerequisites / NoticeEach term paper will be reviewed by one fellow student and one faculty. The submission of a written review is a prerequisite for obtaining the credit points.
There is no final exam. Grade is assigned based on the quality of the term paper and the submission of another student's review.

Students are expected to take Term Paper Writing and Term Paper Seminar classes in sequence.