Das Frühjahrssemester 2021 findet bis auf Weiteres online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind. Bitte beachten Sie die Informationen der Dozierenden.

Martin Mächler: Katalogdaten im Frühjahrssemester 2019

NameHerr Prof. Dr. Martin Mächler
Adresse
Seminar für Statistik (SfS)
ETH Zürich, HG G 16
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 34 08
E-Mailmaechler@stat.math.ethz.ch
URLhttp://stat.ethz.ch/~maechler
DepartementMathematik
BeziehungTitularprofessor

NummerTitelECTSUmfangDozierende
401-4620-00LStatistics Lab Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 27
6 KP2SM. Kalisch, M. H. Maathuis, M. Mächler, L. Meier, N. Meinshausen
Kurzbeschreibung"Statistics Lab" is an Applied Statistics Workshop in Data Analysis. It
provides a learning environment in a realistic setting.

Students lead a regular consulting session at the Seminar für Statistik
(SfS). After the session, the statistical data analysis is carried out and
a written report and results are presented to the client. The project is
also presented in the course's seminar.
Lernziel- gain initial experience in the consultancy process
- carry out a consultancy session and produce a report
- apply theoretical knowledge to an applied problem

After the course, students will have practical knowledge about statistical
consulting. They will have determined the scientific problem and its
context, enquired the design of the experiment or data collection, and
selected the appropriate methods to tackle the problem. They will have
deepened their statistical knowledge, and applied their theoretical
knowledge to the problem. They will have gathered experience in explaining
the relevant mathematical and software issues to a client. They will have
performed a statistical analysis using R (or SPSS). They improve their
skills in writing a report and presenting statistical issues in a talk.
InhaltStudents participate in consulting meetings at the SfS. Several consulting
dates are available for student participation. These are arranged
individually.

-During the first meeting the student mainly observes and participates in
the discussion. During the second meeting (with a different client), the
student leads the meeting. The member of the consulting team is overseeing
(and contributing to) the meeting.

-After the meeting, the student performs the recommended analysis, produces
a report and presents the results to the client.

-Finally, the student presents the case in the weekly course seminar in a
talk. All students are required to attend the seminar regularly.
Skriptn/a
LiteraturThe required literature will depend on the specific statistical problem
under investigation. Some introductory material can be found below.
Voraussetzungen / BesonderesPrerequisites:
Sound knowledge in basic statistical methods, especially regression and, if
possible, analysis of variance. Basic experience in Data Analysis with R.
401-4626-00LMixed Models4 KP2VM. Mächler
KurzbeschreibungMixed Models = (*| generalized| non-) linear Mixed-effects Models, extend traditional regression models by adding "random effect" terms.

In applications, such models are called "hierarchical models", "repeated measures" or "split plot designs". Mixed models are widely used and appropriate in an aera of complex data measured from living creatures from biology to human sciences.
Lernziel- Becoming aware how mixed models are more realistic and more powerful in many cases than traditional ("fixed-effects only") regression models.

- Learning to fit such models to data correctly, critically interpreting results for such model fits, and hence learning to work the creative cycle of responsible statistical data analysis:
"fit -> interpret & diagnose -> modify the fit -> interpret & ...."

- Becoming aware of computational and methodological limitations of these models, even when using state-of-the art software.
InhaltThe lecture will build on various examples, use R and notably the `lme4` package, to illustrate concepts. The relevant R scripts are made available online.

Inference (significance of factors, confidence intervals) will focus on the more realistic *un*balanced situation where classical (ANOVA, sum of squares etc) methods are known to be deficient. Hence, Maximum Likelihood (ML) and its variant, "REML", will be used for estimation and inference.
SkriptWe will work with an unfinished book proposal from Prof Douglas Bates, Wisconsin, USA which itself is a mixture of theory and worked R code examples.

These lecture notes and all R scripts are made available from
https://github.com/mmaechler/MEMo
Literatur(see web page and lecture notes)
Voraussetzungen / Besonderes- We assume a good working knowledge about multiple linear regression ("the general linear model') and an intermediate (not beginner's) knowledge about model based statistics (estimation, confidence intervals,..).

Typically this means at least two classes of (math based) statistics, say
1. Intro to probability and statistics
2. (Applied) regression including Matrix-Vector notation Y = X b + E

- Basic (1 semester) "Matrix calculus" / linear algebra is also assumed.

- If familiarity with [R](https://www.r-project.org/) is not given, it should be acquired during the course (by the student on own initiative).
401-5640-00LZüKoSt: Seminar on Applied Statistics Information 0 KP1KM. Kalisch, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. H. Maathuis, M. Mächler, L. Meier, N. Meinshausen, M. Robinson, C. Strobl, S. van de Geer
Kurzbeschreibung5 bis 6 Vorträge zur angewandten Statistik.
LernzielKennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Gebieten, besonders in Naturwissenschaft, Technik und Medizin.
InhaltIn 5-6 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen.
3 bis 4 der Vorträge stehen in der Regel unter einem Semesterthema.
SkriptBei manchen Vorträgen werden Unterlagen verteilt.
Eine Zusammenfassung ist kurz vor den Vorträgen im Internet unter http://stat.ethz.ch/talks/zukost abrufbar.
Ankündigunen der Vorträge werden auf Wunsch zugesandt.
Voraussetzungen / BesonderesDies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.
Nach besonderem Programm. Koordinator M. Kalisch, Tel. 044 632 3435
Lehrsprache ist Englisch oder Deutsch je nach ReferentIn.
Course language is English or German and may depend on the speaker.
401-6228-00LProgramming with R for Reproducible Research Information 1 KP1GM. Mächler
KurzbeschreibungDeeper understanding of R: Function calls, rather than "commands".
Reproducible research and data analysis via Sweave and Rmarkdown.
Limits of floating point arithmetic.
Understanding how functions work. Environments, packages, namespaces.
Closures, i.e., Functions returning functions.
Lists and [mc]lapply() for easy parallelization.
Performance measurement and improvements.
Lernziel
InhaltSee https://stat.ethz.ch/education/semesters/ss2014/Progr_R3
SkriptMaterial available from
https://stat.ethz.ch/education/semesters/ss2014/Progr_R3
LiteraturNorman Matloff (2011) The Art of R Programming - A tour of statistical software design.
no starch press, San Francisco. on stock at Polybuchhandlung (CHF 42.-).
Voraussetzungen / BesonderesR Knowledge on the same level as after *both* parts of the ETH lecture
401-6217-00L Using R for Data Analysis and Graphics
http://www.vvz.ethz.ch/Vorlesungsverzeichnis/lerneinheitPre.do?semkez=2013W&lerneinheitId=84563&ansicht=ALLE&lang=de