Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Beat H. Meier: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Beat H. Meier
FieldPhysikalische Chemie
Address
Lab. für Physikalische Chemie
ETH Zürich, HCI D 229
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telephone+41 44 632 44 01
E-mailbeat.meier@nmr.phys.chem.ethz.ch
DepartmentChemistry and Applied Biosciences
RelationshipFull Professor

NumberTitleECTSHoursLecturers
529-0432-00LPhysical Chemistry IV: Magnetic Resonance4 credits3GB. H. Meier, M. Ernst, G. Jeschke, R. Riek
AbstractTheoretical foundations of magnetic resonance (NMR,EPR) and selected applications.
ObjectiveIntroduction to magnetic resonance in isotropic and anisotropic phase.
ContentThe course gives an introduction to magnetic resonance spectroscopy (NMR and EPR) in liquid, liquid crystalline and solid phase. It starts from a classical description in the framework of the Bloch equations. The implications of chemical exchange are studied and two-dimensional exchange spectroscopy is introduced. An introduction to Fourier spectroscopy in one and two dimensions is given and simple 'pulse trickery' is described. A quantum-mechanical description of magnetic resonance experiments is introduced and the spin Hamiltonian is derived. The chemical shift term as well as the scalar, dipolar and quadrupolar terms are discussed. The product-operator formalism is introduced and various experiments are described, e.g. polarization transfer. Applications in chemistry, biology, physics and medicine, e.g. determination of 3D molecular structure of dissolved molecules, determination of the structure of paramagnetic compounds and imaging (MRI) are presented.
Lecture noteshanded out in the lecture (in english)
Literaturesee http://www.ssnmr.ethz.ch/education/PC_IV_Lecture
529-0443-00LAdvanced Magnetic Resonance7 credits3GB. H. Meier, M. Ernst
AbstractThe course is for advanced students and covers selected topics from magnetic resonance spectroscopy. This year, the
lecture will introduce and discuss relaxation theory and its applications in magnetic resonance.
ObjectiveThe aim of the course is to familiarize the students with the basic concepts of magnetic resonance relaxation theory in
liquids and solids. Starting from the mathematical description of spin dynamics, the effect of stochastic motional
processes on the density operator will be analyzed. In the end students should understand the Redfield formulation of
relaxation and be able to understand the effect of dynamics on magnetic resonance experiments.
ContentThe aim of the course is to familiarize the students with the basic concepts of magnetic resonance relaxation theory in
liquids and solids. Starting from the mathematical description of spin dynamics, the effect of stochastic motional
processes on the density operator will be analyzed. In the end students should understand the Redfield formulation of
relaxation and be able to understand the effect of dynamics on magnetic resonance experiments.
Lecture notesA script which covers the topics will be distributed in the lecture and will be accessible through the web page http://www.ssnmr.ethz.ch/education/
529-0449-00LSpectroscopy13 credits13PE. C. Meister, G. Jeschke, B. H. Meier, F. Merkt, R. Riek, R. Signorell, H. J. Wörner
AbstractLaboratory experiments to acquire a profound knowledge of spectroscopical methods and techniques in chemistry. Evaluation and visualization of measurement data. Writing lab reports.
ObjectiveLaboratory experiments to acquire a profound knowledge of spectroscopical methods and techniques in chemistry. Evaluation and visualization of measurement data. Writing lab reports.
ContentLaboratory experiments: UV/VIS spectroscopy, luminescence spectroscopy, FT infrared spectroscopy, dye laser, light diffraction and refraction, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), FT nuclear magnetic resonance spectroscopy (NMR), electron paramagnetic resonance spectroscopy (EPR), atomic force microscopy (AFM), Fourier transform methods.
Lecture notesDetailed documentations to each experiment will be handed out.
E. Meister, Grundpraktikum Physikalische Chemie, 2. Auflage, vdf Hochschulverlag an der ETH, Zürich 2012.
Prerequisites / NoticePraktikum Physikalische und Analytische Chemie (529-0054-00) or
Praktikum Physikalische Chemie (529-0054-01).
529-0480-00LNuclear Magnetic Resonance Seminar Restricted registration - show details 0 credits3SB. H. Meier
AbstractResearch seminar on current problems in nuclear magnetic resonance spectroscopy
Objective
529-0489-00LIntroduction to the Construction of Measurement Devices in Physical Chemistry Restricted registration - show details 2 credits2PB. H. Meier
AbstractBasic concepts of the construction of instrumentation in physical chemistry. Practical execises in mechanical construction and electronic circuits.
ObjectiveKennenlernen der Grundlagen der Konstruktion von physikalisch-chemischen Messinstrumenten. Praktische Übungen in mechanischer Konstruktion. Befähigung zum selbstständigen Arbeiten (Drehen, Fräsen, Bohren).
Einführung in die elektronische Messtechnik, die Radiofrequenz- und Mikrowellentechnologie und in die Digitalelektronik.
Lecture notesUnterlagen in der ersten Stunde verteilt.
Prerequisites / NoticeZugang mit Bewilligung des Dozenten
529-0499-00LPhysical Chemistry1 credit1KB. H. Meier, G. Jeschke, F. Merkt, M. Quack, M. Reiher, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner
AbstractInstitute-Seminar covering current research Topics in Physical Chemistry
Objective