Rolf Holderegger: Catalogue data in Spring Semester 2021

Name Prof. Dr. Rolf Holderegger
Address
WSL
Zürcherstrasse 111
8903 Birmensdorf ZH
SWITZERLAND
Telephone044 739 25 27
E-mailrolf.holderegger@usys.ethz.ch
DepartmentEnvironmental Systems Science
RelationshipAdjunct Professor

NumberTitleECTSHoursLecturers
701-0322-00LSeminar with Conservation Practitioners2 credits2SR. Holderegger, A. L. Bergamini
AbstractIn this seminar, students meet with conservation practitioners. The students and the practitioners, will consider current concepts and problems in nature conservation. This includes input-presentations by practitioners, and students will discuss and treat relevant problems in more detail.
ObjectiveThe aim of the seminar is to bring students into contact with practitioners in nature conservation and to consider and discuss current problems of nature conservation in Switzerland.
ContentThe seminar consists of several blocks, each dealing with a separate problem or topic of nature conservation. Each block includes a presentation and a more-in-depth treatment of the corresponding theme in student groups and discussions. The invited professionals are from national and cantonal authorities, consulting offices, NGOs or from research institutes. Additionally, there is a short excursion.
Lecture notesNo script. Diverse material will be made available.
LiteratureNo text book.
Prerequisites / NoticeThe additional effort of students, in addition to the lecture hours, is about 2 hours per week.
The evaluation of student activities is an integral part of the seminar.

Teaching type: This seminar needs the active participation of students! It consists of input talks, group work, presentations, discussions, reading and a short excursion.
701-1450-00LConservation Genetics3 credits4GR. Holderegger, M. C. Fischer, F. Gugerli
AbstractThe course deals with conservation genetics and its practical applications. It introduces the genetic theories of conservation genetics, such as inbreeding depression, adaptive genetic diversity or fragmentation. The course also shows how genetic methods such as eDNA and metabarcoding are used in conservation management, and it critically discusses the benefits and limits of conservation genetics.
ObjectiveGenetic and evolutionary argumentation is an important feature of conservation biology. The course equips students with knowledge on conservation genetics and its applications in conservation management. The course introduces the main theories of conservation genetics and shows how genetic methods are used in conservation management. In addition, it critically discusses the benefits and limits of conservation genetics. Practical examples dealing with animals and plants are presented.
ContentThere are 4 hours of lectures, presentations and group work per week. Students also have to spend about 3 hours per week on preparatory work for the following week. Every week, one subject will be presented by one of three lecturers.

Overview of themes:
Barcoding, eDNA metabarcoding and genetic monitoring; effects of small population size, genetic drift and inbreeding; neutral and adaptive genetic diversity; hybridization; gene flow, fragmentation and connectivity.

Specific topics:
(1) Species and individual identification: barcoding; metabarcoding; eDNA; estimation of census population size; habitat use and genetic monitoring.
(2) Inbreeding and inbreeding depression: small population size; bottlenecks; genetic drift; inbreeding and inbreeding depression; effective population size.
(3) Adaptive genetic diversity: neutral and adaptive genetic variation; importance of adaptive genetic diversity; methods to measure adaptive genetic variation.
(4) Hybridization and monitoring of genetic diversity: gene introgression; gene flow across species boundaries; demographic swamping; monitoring of genetic diversity.
(5) Half day excursion: practical example of conservation genetics on fragmentation.
(6) Discussion and evaluation of excursion; gene flow: historical and contemporary gene flow and dispersal; fragmentation and connectivity.
(7) Oral examination.
Lecture notesNo script; handouts and material for downloading will be provided.
LiteratureThere is no textbook for this course, but the following books are recommended:
Allendorf F.W., Luikart G.; Aitken S.N. 2013. Conservation and the Genetics of Populations, 2nd edition. Wiley, Oxford.
Frankham R., Ballou J.D., Briscoe D.A. 2010. Introduction to Conservation Genetics, 2nd edition. Cambridge University Press, Cambridge.

The following book and booklets in German are targeted to conservation professionals:
Holderegger R., Segelbacher G. (eds.). 2016. Naturschutzgenetik. Ein Handbuch für die Praxis. Haupt, Bern.
Csencsics D., Gugerli F. 2017. Naturschutzgenetik. WSl Berichte 60: 1-82 (free download: https://www.wsl.ch/de/publikationensuchen/wsl-berichte.html)
Prerequisites / NoticeRequirements:
Students must have a good background in genetics as well as in ecology and evolution. The courses "Population and Quantitative Genetics" or "Evolutionary Genetics" should have been attended.

Examination:
A final oral examination on the content of the course and the excursion are integral parts of the course.

Teaching forms:
The course needs the active participation of students. It consists of lectures, group work, presentations, discussions, reading and a half-day excursion.