Thomas Rösgen: Catalogue data in Spring Semester 2021

Name Prof. em. Dr. Thomas Rösgen
FieldStrömungslehre
Address
Institut für Fluiddynamik
ETH Zürich, ML H 33
Sonneggstrasse 3
8092 Zürich
SWITZERLAND
Telephone+41 44 632 26 46
E-mailroesgen@ifd.mavt.ethz.ch
DepartmentMechanical and Process Engineering
RelationshipProfessor emeritus

NumberTitleECTSHoursLecturers
151-0102-00LFluid Dynamics I Restricted registration - show details 6 credits4V + 2UT. Rösgen
AbstractAn introduction to the physical and mathematical foundations of fluid dynamics is given.
Topics include dimensional analysis, integral and differential conservation laws, inviscid and viscous flows, Navier-Stokes equations, boundary layers, turbulent pipe flow. Elementary solutions and examples are presented.
ObjectiveAn introduction to the physical and mathematical principles of fluid dynamics. Fundamental terminology/principles and their application to simple problems.
ContentPhenomena, applications, foundations
dimensional analysis and similitude; kinematic description; conservation laws (mass, momentum, energy), integral and differential formulation; inviscid flows: Euler equations, stream filament theory, Bernoulli equation; viscous flows: Navier-Stokes equations; boundary layers; turbulence
Lecture notesLecture notes (extended formulary) for the course are made available electronically.
LiteratureRecommended book: Fluid Mechanics, Kundu & Cohen & Dowling, 6th ed., Academic Press / Elsevier (2015).
Prerequisites / NoticeVoraussetzungen: Physik, Analysis
151-0110-00LCompressible Flows4 credits2V + 1UT. Rösgen
AbstractTopics: unsteady one-dimensional subsonic and supersonic flows, acoustics, sound propagation, supersonic flows with shocks and Prandtl-Meyer expansions, flow around slender bodies, shock tubes, reaction fronts (deflagration and detonation).
Mathematical tools: method of characteristics and selected numerical methods.
ObjectiveIllustration of compressible flow phenomena and introduction to the corresponding mathematical description methods.
ContentThe interaction of compressibility and inertia is responsible for wave generation in a fluid. The compressibility plays an important role for example in unsteady phenomena, such as oscillations in gas pipelines or exhaust pipes. Compressibility effects are also important in steady subsonic flows with high Mach numbers (M>0.3) and in supersonic flows (e.g. aeronautics, turbomachinery).
The first part of the lecture deals with wave propagation phenomena in one-dimensional subsonic and supersonic flows. The discussion includes waves with small amplitudes in an acoustic approximation and waves with large amplitudes with possible shock formation.
The second part deals with plane, steady supersonic flows. Slender bodies in a parallel flow are considered as small perturbations of the flow and can be treated by means of acoustic methods. The description of the two-dimensional supersonic flow around bodies with arbitrary shapes includes oblique shocks and Prandtl-Meyer expansions etc.. Various boundary conditions, which are imposed for example by walls or free-jet boundaries, and interactions, reflections etc. are taken into account.
Lecture notesnot available
Literaturea list of recommended textbooks is handed out at the beginning of the lecture.
Prerequisites / Noticeprerequisites: Fluiddynamics I and II
151-0111-00LResearch Seminar in Fluid Dynamics
Internal research seminar for graduate students and scientific staffs of the IFD
0 credits2SF. Coletti, P. Jenny, T. Rösgen, O. Supponen
AbstractCurrent research projects at the Institute of Fluid Dynamics are presented and discussed.
ObjectiveExchange on current internal research projects. Training of presentation skills.
ContentCurrent research projects in Fluid Dynamics
151-1053-00LThermo- and Fluid Dynamics0 credits2KP. Jenny, R. S. Abhari, G. Haller, C. Müller, N. Noiray, D. Poulikakos, T. Rösgen, A. Steinfeld
AbstractCurrent advanced research activities in the areas of thermo- and fluid dynamics are presented and discussed, mostly by external speakers.

The talks are public and open also for interested students.
ObjectiveKnowledge of advanced research in the areas of thermo- and fluid dynamics
ContentCurrent advanced research activities in the areas of thermo- and fluid dynamics are presented and discussed, mostly by external speakers.
401-5950-00LSeminar in Fluid Dynamics for CSE Restricted registration - show details 4 credits2SP. Jenny, T. Rösgen
AbstractEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
ObjectiveEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
Prerequisites / NoticeContact Prof. P. Jenny or PD Dr. D. Meyer-Massetti before the beginning of the semester