The spring semester 2021 will certainly take place online until Easter. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers.

Bernd Gärtner: Catalogue data in Spring Semester 2019

Name Prof. Dr. Bernd Gärtner
Address
Inst. f. Theoretische Informatik
ETH Zürich, CAB G 31.1
Universitätstrasse 6
8092 Zürich
SWITZERLAND
Telephone+41 44 632 70 26
Fax+41 44 632 10 63
E-mailgaertner@inf.ethz.ch
URLhttp://people.inf.ethz.ch/gaertner/
DepartmentComputer Science
RelationshipAdjunct Professor

NumberTitleECTSHoursLecturers
252-4202-00LSeminar in Theoretical Computer Science Information
The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
2 credits2SA. Steger, B. Gärtner, M. Ghaffari, M. Hoffmann, J. Lengler, D. Steurer, B. Sudakov
AbstractPresentation of recent publications in theoretical computer science, including results by diploma, masters and doctoral candidates.
ObjectiveTo get an overview of current research in the areas covered by the involved research groups. To present results from the literature.
Prerequisites / NoticeThis seminar takes place as part of the joint research seminar of several theory groups. Intended participation is for students with excellent performance only. Formal minimal requirement is passing of one of the courses Algorithms, Probability, and Computing, Randomized Algorithms and Probabilistic Methods, Geometry: Combinatorics and Algorithms, Advanced Algorithms. (If you cannot fulfill this restriction, because this is your first term at ETH, but you believe that you satisfy equivalent criteria, please send an email with a detailed description of your reasoning to the organizers of the seminar.)
261-5110-00LOptimization for Data Science Information 8 credits3V + 2U + 2AB. Gärtner, D. Steurer
AbstractThis course teaches an overview of modern optimization methods, with applications in particular for machine learning and data science.
ObjectiveUnderstanding the theoretical and practical aspects of relevant optimization methods used in data science. Learning general paradigms to deal with optimization problems arising in data science.
ContentThis course teaches an overview of modern optimization methods, with applications in particular for machine learning and data science.

In the first part of the course, we will discuss how classical first and second order methods such as gradient descent and Newton's method can be adapated to scale to large datasets, in theory and in practice. We also cover some new algorithms and paradigms that have been developed specifically in the context of data science. The emphasis is not so much on the application of these methods (many of which are covered in other courses), but on understanding and analyzing the methods themselves.

In the second part, we discuss convex programming relaxations as a powerful and versatile paradigm for designing efficient algorithms to solve computational problems arising in data science. We will learn about this paradigm and develop a unified perspective on it through the lens of the sum-of-squares semidefinite programming hierarchy. As applications, we are discussing non-negative matrix factorization, compressed sensing and sparse linear regression, matrix completion and phase retrieval, as well as robust estimation.
Prerequisites / NoticeAs background, we require material taught in the course "252-0209-00L Algorithms, Probability, and Computing". It is not necessary that participants have actually taken the course, but they should be prepared to catch up if necessary.
263-4203-00LGeometry: Combinatorics and Algorithms Information
The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar.
2 credits2SB. Gärtner, M. Hoffmann, C.‑H. Liu, M. Wettstein
AbstractThis seminar complements the course Geometry: Combinatorics & Algorithms. Students of the seminar will present original research papers, some classic and some of them very recent.
ObjectiveEach student is expected to read, understand, and elaborate on a selected research paper. To this end, (s)he should give a 45-min. presentation about the paper. The process includes

* getting an overview of the related literature;
* understanding and working out the background/motivation:
why and where are the questions addressed relevant?
* understanding the contents of the paper in all details;
* selecting parts suitable for the presentation;
* presenting the selected parts in such a way that an audience
with some basic background in geometry and graph theory can easily understand and appreciate it.
ContentThis seminar is held once a year and complements the course Geometry: Combinatorics & Algorithms. Students of the seminar will present original research papers, some classic and some of them very recent. The seminar is a good preparation for a master, diploma, or semester thesis in the area.
Prerequisites / NoticePrerequisite: Successful participation in the course "Geometry: Combinatorics & Algorithms" (takes place every HS) is required.