The spring semester 2021 will take place online until further notice. Exceptions: Courses that can only be carried out with on-site presence. Please note the information provided by the lecturers.

# Marc Burger: Catalogue data in Autumn Semester 2016

 Name Prof. Dr. Marc Burger Field Mathematik Address Dep. MathematikETH Zürich, HG G 37.1Rämistrasse 1018092 ZürichSWITZERLAND Telephone +41 44 632 49 73 Fax +41 44 632 10 85 E-mail marc.burger@math.ethz.ch URL http://www.math.ethz.ch/~burger Department Mathematics Relationship Full Professor

NumberTitleECTSHoursLecturers
401-3200-64LProofs from THE BOOK
Number of participants limited to 26.
4 credits2SM. Burger
Abstract
ObjectiveZiel des Seminares ist zu lernen wie man Mathematik vortraegt. Als
Vorlage fuer dieses Seminar dient das Buch von Aigner und Ziegler "Proofs from the BOOK"
das aus allen Gebieten der Mathematik fundamentale Saetze und deren "schoensten" Beweise
praesentiert. Die Auswahl der Themen ist also gross und es gibt etwas fuer jeden Geschmack.
Vortraege koennen auf Deutsch, Franzoesisch oder Englisch gehalten werden.
401-4531-66LTopics in Rigidity Theory6 credits3GM. Burger
AbstractThe aim of this course is to give detailed proofs of Margulis' normal subgroup theorem and his superrigidity theorem for lattices in higher rank Lie groups.
ObjectiveUnderstand the basic techniques of rigidity theory.
ContentThis course gives an introduction to rigidity theory, which is a set of techniques initially invented to understand the structure of a certain class of discrete subgroups of Lie groups, called lattices, and currently used in more general contexts of groups arising as isometries of non-positively curved geometries. A prominent example of a lattice in the Lie group SL(n, R) is the group SL(n, Z) of integer n x n matrices with determinant 1. Prominent questions concerning this group are:
- Describe all its proper quotients.
- Classify all its finite dimensional linear representations.
- More generally, can this group act by diffeomorphisms on "small" manifolds like the circle?
- Does its Cayley graph considered as a metric space at large scale contain enough information to recover the group structure?
In this course we will give detailed treatment for the answers to the first two questions; they are respectively Margulis' normal subgroup theorem and Margulis' superrigidity theorem. These results, valid for all lattices in simple Lie groups of rank at least 2 --like SL(n, R), with n at least 3-- lead to the arithmeticity theorem, which says that all lattices are obtained by an arithmetic construction.
Literature- R. Zimmer: "Ergodic Theory and Semisimple groups", Birkhauser 1984.
- D. Witte-Morris: "Introduction to Arithmetic groups", available on Arxiv
- Y. Benoist: "Five lectures on lattices in semisimple Lie groups", available on his homepage.
- M.Burger: "Rigidity and Arithmeticity", European School of Group Theory, 1996, handwritten notes, will be put online.
Prerequisites / NoticeFor this course some knowledge of elementary Lie theory would be good. We will however treat Lie groups by examples and avoid structure theory since this is not the point of the course nor of the techniques.
401-5000-00LZurich Colloquium in Mathematics 0 creditsW. Werner, P. L. Bühlmann, M. Burger, S. Mishra, R. Pandharipande, University lecturers
AbstractThe lectures try to give an overview of "what is going on" in important areas of contemporary mathematics, to a wider non-specialised audience of mathematicians.
Objective
401-5530-00LGeometry Seminar 0 credits1KM. Burger, M. Einsiedler, U. Lang, University lecturers
AbstractResearch colloquium
Objective