Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Sabine Güsewell: Catalogue data in Autumn Semester 2016

Name PD Dr. Sabine Güsewell
FieldPflanzenökologie
Address
Professur für Pflanzenökologie
ETH Zürich, CHN H 66
Universitätstrasse 16
8092 Zürich
SWITZERLAND
E-mailsabine.guesewell@usys.ethz.ch
DepartmentEnvironmental Systems Science
RelationshipPrivatdozentin

NumberTitleECTSHoursLecturers
701-0243-01LBiology III: Essentials of Ecology3 credits2VS. Güsewell, C. Vorburger
AbstractThis lecture presents an introduction to ecology. It includes basic ecological concepts and the most important levels of complexity in ecological research. Ecological concepts are exemplified by using aquatic and terrestrial systems; corresponding methodological approaches are demonstrated. In a more applied part of the lecture threats to biodiversity and the appropriate management are discussed.
ObjectiveThe objective of this lecture is to teach basic ecological concepts and the different levels of complexity in ecological research: the individual, the population, the community and the ecosystem level.
The students should learn ecological concepts at these different levels in the context of concrete examples from terrestrial and aquatic ecology. Corresponding methods for studying the systems will be presented.
A further aim of the lecture is that students achieve an understanding of biodiversity, why it is threatened and how it can be managed.
Content- Übersicht der aquatischen und terrestrischen Lebensräume mit ihren Bewohnern
- Einfluss von Umweltfaktoren (Temperatur, Strahlung, Wasser, Nährstoffe etc.) auf Organismen; Anpassung an bestimmte Umweltbedingungen
- Populationsdynamik: Ursachen, Beschreibung, Vorhersage und Regulation
- Interaktionen zwischen Arten (Konkurrenz, Koexistenz, Prädation, Parasitismus, Nahrungsnetze)
- Lebensgemeinschaften: Struktur, Stabilität, Sukzession
- Ökosysteme: Kompartimente, Stoff- und Energieflusse
- Biodiversität: Variation, Ursachen, Gefährdung und Erhaltung
- Aktuelle Naturschutzprobleme und -massnahmen
- Evolutionäre Ökologie: Methodik, Spezialisierung, Koevolution
Lecture notesUnterlagen, Vorlesungsfolien und relevante Literatur sind in der Lehrdokumentenablage abrufbar. Die Unterlagen für die nächste Vorlesung stehen jeweils spätestens am Freitagmorgen zur Verfügung.
LiteratureGenerelle Ökologie:
Townsend, Harper, Begon 2009. Ökologie. Springer, ca. Fr. 70.-

Aquatische Ökologie:
Lampert & Sommer 1999. Limnoökologie. Thieme, 2. Aufl., ca. Fr. 55.-;
Bohle 1995. Limnische Systeme. Springer, ca. Fr. 50.-

Naturschutzbiologie:
Baur B. et al. 2004. Biodiversität in der Schweiz. Haupt, Bern, 237 S.
Primack R.B. 2004. A primer of conservation biology. 3rd ed. Sinauer, Mass. USA, 320 pp.
701-0323-00LPlant Ecology3 credits2VS. Güsewell, J. Levine
AbstractThis class focuses on ecological processes involved with plant life, mechanisms of plant adaptation, plant-animal and plant-soil interactions, plant strategies and implications for the structure and function of plant communities. The discussion of original research examples familiarises students with research questions and methods; they learn to evaluate results and interpretations.
ObjectiveStudents will be able to:
- propose methods to study ecological processes involved with plant life, and how these processes depend on internal and external factors;
- analyse benefits and costs of plant adaptations;
- explain plant strategies with relevant traits and trade-offs;
- explain and predict the assembly of plant communities;
- explain implications of plant strategies for animals, microbes and ecosystem functions;
- evaluate studies in plant ecology regarding research questions, assumptions, methods, as well as the reliability and relevance of results.
ContentPlants represent the matrix of natural communities. The structure and dynamics of plant populations drives the function of ecosystems. This course presents essential processes and plant traits involved with plant life. We focus on research questions that have been of special interest to plant ecologists as well as current topical questions. We use original research examples to discuss how ecological questions are studied and how results are interpreted.
- Growth: what determines the production of a plant?
- Nutrients: consumption or recycling: opposite strategies and feedbacks on soils;
- Clonality: collaboration and division of labour in plants;
- Plasticity: benefits and costs of plant intelligence;
- Flowering and pollination: how expensive is sex?
- Seed types, dispersal, seed banks and germination: strategies and trade-offs in the persistence of plant populations;
- Development and structure of plant populations;
- Stress, disturbance and competition as drivers of different plant strategies;
- Herbivory: plant-animal feedbacks and functioning of grazing ecosystems
- Fire: impacts on plants, vegetation and ecosystems.
- Plant functional types and rules in the assembly of plant communities.
Lecture notesHandouts and further reading will be available electronically at the beginning of the semester.
Prerequisites / NoticePrerequisites
- General knowledge of plant biology
- Basic knowledge of plant sytematics
- General ecological concepts
701-1419-00LAnalysis of Ecological Data2 credits2GS. Güsewell
AbstractThis class provides students with an overview of techniques for data analysis used in modern ecological research, as well as practical experience in running these analyses with R and interpreting the results. Topics include linear models, generalized linear models, mixed models, model selection and randomization methods.
ObjectiveStudents will be able to:
- describe the aims and principles of important techniques for the analysis of ecological data
- choose appropriate techniques for given problems and types of data
- evaluate assumptions and limitations
- implement the analyses in R
- represent the relevant results in graphs, tables and text
- interpret and evaluate the results in ecological terms
Content- Linear models for experimental and observational studies
- Model selection
- Introduction to likelihood inference and Bayesian statistics
- Analysis of counts and proportions (generalised linear models)
- Models for non-linear relationships
- Grouping and correlation structures (mixed models)
- Randomisation methods
Lecture notesLecture notes and additional reading will be available electronically a few days before the course
LiteratureSuggested books for additional reading (available electronically)
Zuur A, Ieno EN & Smith GM (2007) Analysing ecological data. Springer, Berlin.
Zuur A, Ieno EN, Walker NJ, Saveliev AA & Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York.
Faraway JJ (2006) Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Taylor & Francis.
Prerequisites / NoticeTime schedule
The course takes place over a period of nine days from Thursday 12.01 to Friday 20.01, with classes on 12, 13, 16, 17 and 18.01. and an exam in the morning of 20.01.

Prerequisites
- Basic statistical training (e.g. Mathematik IV in D-USYS): Data distributions, descriptive statistics, hypothesis testing, linear regression, analysis of variance
- Basic experience in data handling and data analysis in R

Individual preparation
Students without the required knowledge are asked to contact the lecturer before Christmas for support with individual preparation.