Peter Andreas Kast: Catalogue data in Autumn Semester 2021

Name Prof. Dr. Peter Andreas Kast
Name variantsPeter Kast
Peter A. Kast
Peter Andreas Kast
Address
Kast, Peter (Tit.-Prof.)
ETH Zürich, HCI F 333
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telephone+41 44 632 29 08
Fax+41 44 633 13 26
E-mailkast@org.chem.ethz.ch
URLhttp://www.kast.ethz.ch
DepartmentChemistry and Applied Biosciences
RelationshipAdjunct Professor

NumberTitleECTSHoursLecturers
529-0731-00LNucleic Acids and Carbohydrates
Note for BSc Biology students: Only one of the two concept courses 529-0731-00 Nucleic Acids and Carbohydrates (autumn semester) or 529-0732-00 Proteins and Lipids (spring semester) can be counted for the Bachelor's degree.
6 credits3GD. Hilvert, P. A. Kast, S. J. Sturla, H. Wennemers
AbstractStructure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines
ObjectiveStructure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines
ContentStructure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines
Lecture notesNo script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server).
LiteratureMainly based on original literature, a detailed list will be distributed during the lecture
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Personal CompetenciesSelf-awareness and Self-reflection assessed
Self-direction and Self-management assessed
529-0739-01LBiological Chemistry B: New Enzymes from Directed Evolution Experiments Information Restricted registration - show details
Number of participants limited to 12.

General safety regulations for all block courses:
The COVID certificate is mandatory at ETH Zurich.
Only students who have a Covid certificate, i.e. who have been vaccinated, have recovered or have been tested, are entitled to attend courses in attendance.

-Whenever possible the distance rules have to be respected -All students have to wear masks throughout the course. Please keep reserve masks ready. Surgical masks (IIR) or medical grade masks (FFP2) without a valve are permitted. Community masks (fabric masks) are not allowed.
-The installation and activation of the Swiss Covid-App is highly encouraged -Any additional rules for individual courses have to be respected -Students showing any COVID-19 symptoms are not allowed to enter ETH buildings and have to inform the course responsible.
6 credits7PP. A. Kast
AbstractDuring the block course in the fall semester, we will carry out biological-chemical enzyme evolution experiments using molecular genetic mutation technologies and in vivo selection in recombinant bacterial strains. The class with its very dense program consists of the practical course itself and an integrated series of seminar/lecture sessions.
ObjectiveAll technologies used for the experiments will be explained to the students in theory and in practice with the goal that they will be able to independently apply them for the course project and in future research endeavors. After the course, an individual report about the results obtained has to be prepared.
ContentThe class deals with a specifically designed and genuine research project. We intend to carry out biological-chemical enzyme evolution experiments using molecular genetic mutation technologies and in vivo selection in recombinant bacterial strains. By working in parallel, teams of 2 participants each will generate a variety of different variants of a chorismate mutase. Individual enzyme catalysts will be purified and subsequently characterized using several different spectroscopic methods. The detailed chemical-physical analyses include determination of the enzymes' kinetic parameters, their molecular mass, and the integrity of the protein structure. The results obtained from the individual evolution experiments will be compared and discussed at the end of the class in a final seminar. We expect that during this lab course we will not only generate novel enzymes, but also gain new mechanistic insights into the investigated catalyst.
Lecture notesA script will be distributed to the participants on the first day of the course.
LiteratureGeneral literature to "Directed Evolution" and chorismate mutases, e.g.:

– Taylor, S. V., P. Kast & D. Hilvert. 2001. Investigating and engineering enzymes by genetic selection. Angew. Chem. Int. Ed. 40: 3310-3335.

– Jäckel, C., P. Kast & D. Hilvert. 2008. Protein design by directed evolution. Annu. Rev. Biophys. 37: 153-173.

– Roderer, K. & P. Kast. 2009. Evolutionary cycles for pericyclic reactions – Or why we keep mutating mutases. Chimia 63: 313-317.

Further literature will be indicated in the distributed script.
Prerequisites / NoticeThis laboratory course will involve experiments that require a tight schedule and, particularly in the second half, very long (!) working days. The maximum number of participants for the laboratory class is limited, but surplus applicants may contact P. Kast directly to have their names added to a waiting list. A valid registration is considered a commitment for attendance of the entire course, as involved material orders and experimental preparations are necessary and, once the class has started, the flow of the experiments must not be interrupted by individual absences. In case of an emergency, please immediately notify P. Kast. For more information see http://www.kast.ethz.ch/teaching.html, from where you can also download a flyer.

Safety conceptt: https://chab.ethz.ch/studium/bachelor1.html
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Personal CompetenciesAdaptability and Flexibilityassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
529-0739-10LBiological Chemistry A: Technologies for Directed Evolution of Enzymes Information Restricted registration - show details
Advanced laboratory course or internship depending on lab course Biological Chemistry B

Candidates must inquire with P. Kast no later than September 1st whether course will take place (no self-enrollment)

Further information to registration and work hours: Link
13 credits16PP. A. Kast
AbstractDuring this semester course, methodologies will be taught for biological-chemical enzyme evolution experiments using molecular genetic mutation technologies and in vivo selection in recombinant bacterial strains.
ObjectiveAll technologies used for the experiments will be explained to the students in practice with the goal that they will be able to independently apply them for the course project and in future research endeavors. After the course, an individual report about the results obtained has to be prepared.
ContentThis class conducts and supports experiments for a specifically designed genuine research project. We will carry out biological-chemical enzyme evolution experiments using molecular genetic mutation technologies and in vivo selection in recombinant bacterial strains. The relevant technologies will be taught to the students, such as the preparation of competent cells, production and isolation of DNA fragments, transformation of gene libraries, and DNA sequencing. The course participants will generate a variety of different variants of a chorismate mutase. Individual enzyme catalysts will be purified and subsequently characterized using several different spectroscopic methods. The detailed chemical-physical analyses include determination of the enzymes' kinetic parameters, their molecular mass, and the integrity of the protein structure. The students will present the results obtained from their individual evolution experiments at the end of the semester. We expect that during this lab course we will not only generate novel enzymes, but also gain new mechanistic insights into the investigated catalyst.
Lecture notesThe necessary documents and protocols will be distributed to the participants during the course.
LiteratureGeneral literature to "Directed Evolution" and chorismate mutases, e.g.:

– Taylor, S. V., P. Kast & D. Hilvert. 2001. Investigating and engineering enzymes by genetic selection. Angew. Chem. Int. Ed. 40: 3310-3335.

– Jäckel, C., P. Kast & D. Hilvert. 2008. Protein design by directed evolution. Annu. Rev. Biophys. 37: 153-173.

– Roderer, K. & P. Kast. 2009. Evolutionary cycles for pericyclic reactions – Or why we keep mutating mutases. Chimia 63: 313-317.

Further literature will be indicated in the distributed script.
Prerequisites / Notice- This laboratory course will involve experiments that require a tight schedule and (sometimes) long (!) working days.
- The projects of this course are tightly linked to the ones of the Biology BSc course "529-0739-01 Biological Chemistry B: New Enzymes from Directed Evolution Experiments", which takes place as a block course during the month of November. There will be joint lectures for the participants of both courses during that time. The teaching language is English.
- The number of participants for the laboratory class is limited. It is mandatory to sign up for the course directly with P. Kast no later than September 1, prior to the start of the fall semester. Until then it will be decided whether the course will take place.
- A valid registration is considered a commitment for attendance of the entire semester course, as involved material orders and experimental preparations are necessary and, once the class has started, the flow of the experiments must not be interrupted by individual absences. In case of an emergency, please immediately notify P. Kast.
- For more information, see also http://www.kast.ethz.ch/teaching.html or contact P. Kast directly (HCI F 333, Tel. 044 632 29 08, kast@org.chem.ethz.ch).
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Personal CompetenciesAdaptability and Flexibilityassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed