Thomas Markus Ihn: Catalogue data in Autumn Semester 2020

Name Prof. Dr. Thomas Markus Ihn
Laboratorium für Festkörperphysik
ETH Zürich, HPF E 15.1
Otto-Stern-Weg 1
8093 Zürich
Telephone+41 44 633 22 80
Fax+41 44 633 11 46
RelationshipAdjunct Professor and Privatdozent

402-0073-00LPhysics I Restricted registration - show details 3 credits2V + 1UT. M. Ihn
AbstractIntroduction to the concepts and tools in physics with the help of demonstration experiments: mechanics
ObjectiveStudents know and understand the basic ideas of the scientific description of nature. They understand the fundamental concepts and laws of mechanics and they are able to apply them in practical problems.
Content1. Fundamental concepts of the natural sciences
2. Motion in one dimension
3. Motion in two and three dimensions
4. The laws of Newton
5. Application of Newton's laws
6. Work and energy
7. Conservation laws in systems of many particles
Lecture notesT. Ihn: Physics for Students in Biology and Pharmazeutical Sciences (unpublished lecture notes)
LiteratureThe lecture contains elements of:

Paul A. Tipler and Gene P. Mosca, "Physik für Wissenschaftler und Ingenieure", Springer Spektrum.

Feynman, Leighton, Sands, "The Feynman Lectures on Physics", Volume I (
402-0530-00LMesoscopic Systems0 credits1ST. M. Ihn
AbstractResearch colloquium
402-0595-00LSemiconductor Nanostructures6 credits2V + 1UT. M. Ihn
AbstractThe course covers the foundations of semiconductor nanostructures, e.g., materials, band structures, bandgap engineering and doping, field-effect transistors. The physics of the quantum Hall effect and of common nanostructures based on two-dimensional electron gases will be discussed, i.e., quantum point contacts, Aharonov-Bohm rings and quantum dots.
ObjectiveAt the end of the lecture the student should understand four key phenomena of electron transport in semiconductor nanostructures:
1. The integer quantum Hall effect
2. Conductance quantization in quantum point contacts
3. the Aharonov-Bohm effect
4. Coulomb blockade in quantum dots
Content1. Introduction and overview
2. Semiconductor crystals: Fabrication and band structures
3. k.p-theory, effective mass
4. Envelope functions and effective mass approximation, heterostructures and band engineering
5. Fabrication of semiconductor nanostructures
6. Elektrostatics and quantum mechanics of semiconductor nanostructures
7. Heterostructures and two-dimensional electron gases
8. Drude Transport
9. Electron transport in quantum point contacts; Landauer-Büttiker description
10. Ballistic transport experiments
11. Interference effects in Aharonov-Bohm rings
12. Electron in a magnetic field, Shubnikov-de Haas effect
13. Integer quantum Hall effect
14. Coulomb blockade and quantum dots
Lecture notesT. Ihn, Semiconductor Nanostructures, Quantum States and Electronic Transport, Oxford University Press, 2010.
LiteratureIn addition to the lecture notes, the following supplementary books can be recommended:
1. J. H. Davies: The Physics of Low-Dimensional Semiconductors, Cambridge University Press (1998)
2. S. Datta: Electronic Transport in Mesoscopic Systems, Cambridge University Press (1997)
3. D. Ferry: Transport in Nanostructures, Cambridge University Press (1997)
4. T. M. Heinzel: Mesoscopic Electronics in Solid State Nanostructures: an Introduction, Wiley-VCH (2003)
5. Beenakker, van Houten: Quantum Transport in Semiconductor Nanostructures, in: Semiconductor Heterostructures and Nanostructures, Academic Press (1991)
6. Y. Imry: Introduction to Mesoscopic Physics, Oxford University Press (1997)
Prerequisites / NoticeThe lecture is suitable for all physics students beyond the bachelor of science degree. Basic knowledge of solid state physics is a prerequisit. Very ambitioned students in the third year may be able to follow. The lecture can be chosen as part of the PhD-program. The course is taught in English.