Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

Friedemann Mattern: Katalogdaten im Herbstsemester 2016

NameHerr Prof. Dr. Friedemann Mattern
LehrgebietInformatik
Adresse
Intelligente interaktive Systeme
ETH Zürich, CNB H 104.2
Universitätstrasse 6
8092 Zürich
SWITZERLAND
Telefon+41 44 632 05 36
E-Mailmattern@inf.ethz.ch
URLhttp://people.inf.ethz.ch/mattern/
DepartementInformatik
BeziehungEmeritierter Professor

NummerTitelECTSUmfangDozierende
252-0213-00LVerteilte Systeme Information 8 KP6G + 1AF. Mattern, R. Wattenhofer
KurzbeschreibungVerteilte Kontrollalgorithmen (wechselseitiger Ausschluss, logische Uhren), Kommunikationsmodelle (RPC, synchrone/asynchrone Kommunikation, Broadcast, Ereignisse, Tupelräume), Middleware, Service- und Ressourcen-orientierte Architekturen (SOAP, REST), Sicherheit, Fehlertoleranz (Modelle, Consensus), Replikation (Primary Copy, 2PC, 3PC, Quorum-Systeme), Shared Memory (Spin Locks, Concurrency).
LernzielKennenlernen von wesentlichen Technologien und Architekturen verteilter Systeme.
InhaltWir geben eine Einführung in verteilte Systeme (Charakteristika und Konzepte) und diskutieren sodann verteilte Kontrollalgorithmen (Flooding-Verfahren, wechselseitiger Ausschluss, logische Uhren), Basis-Kommunikationsmodelle (Remote-Procedure-Call, Client-Server-Strukturen, synchrone und asynchrone Kommunikation), abstraktere Kommunikationsprinzipien (Broadcast, Ereignisse, Tupelräume), Namensverwaltung, Middleware und Techniken offener Systeme (z.B. REST, SOAP), Infrastruktur für spontan vernetzte Systeme (JINI), Cloud-Computing sowie Sicherheits- und Schutzmechanismen. Da partielle Systemausfälle charakteristisch für verteilte Systeme sind, werden auch Fehlermodelle und Fehlertoleranz-Algorithmen zum systematischen Umgang mit Fehlersituationen besprochen. Wir diskutieren dazu Fehlertoleranzaspekte (Modelle, Consensus, Agreement) sowie Replikationsaspekte (Primary Copy, 2PC, 3PC, Paxos, Quorum-Systeme, verteilter Speicher) und Probleme bei asynchronen Multiprozesssystemen (Shared Memory, Spin Locks, Concurrency). Parallel zur Vorlesung werden einige der Übungen in Form praktischer mehrwöchiger Aufgaben durchgeführt, wobei die Teilnehmer mit der Programmierung von mobilen Plattformen (smartphones) und nachrichtenbasierten Kommunikationsprinzipien vertraut werden.
252-0437-00LVerteilte Algorithmen Information 4 KP3VF. Mattern
KurzbeschreibungModelle verteilter Berechnungen; Raum-Zeit Diagramme; Virtuelle Zeit; Logische Uhren und Kausalität; Wellenalgorithmen; Verteilte und parallele Graphtraversierung; Berechnung konsistenter Schnappschüsse; Wechselseitiger Ausschluss; Election und Symmetriebrechung; Verteilte Terminierung; Garbage-Collection in verteilten Systemen; Beobachten verteilter Systeme; Berechnung globaler Prädikate.
LernzielKennenlernen von Modellen und Algorithmen verteilter Systeme.
InhaltVerteilte Algorithmen sind Verfahren, die dadurch charakterisiert sind, dass mehrere autonome Prozesse gleichzeitig Teile eines gemeinsamen Problems in kooperativer Weise bearbeiten und der dabei erforderliche Informationsaustausch ausschliesslich über Nachrichten erfolgt. Derartige Algorithmen kommen im Rahmen verteilter Systeme zum Einsatz, bei denen kein gemeinsamer Speicher existiert und die Übertragungszeit von Nachrichten i.a. nicht vernachlässigt werden kann. Da dabei kein Prozess eine aktuelle konsistente Sicht des globalen Zustands besitzt, führt dies zu interessanten Problemen.
Im einzelnen werden u.a. folgende Themen behandelt:
Modelle verteilter Berechnungen; Raum-Zeit Diagramme; Virtuelle Zeit; Logische Uhren und Kausalität; Wellenalgorithmen; Verteilte und parallele Graphtraversierung; Berechnung konsistenter Schnappschüsse; Wechselseitiger Ausschluss; Election und Symmetriebrechung; Verteilte Terminierung; Garbage-Collection in verteilten Systemen; Beobachten verteilter Systeme; Berechnung globaler Prädikate.
Literatur- F. Mattern: Verteilte Basisalgorithmen, Springer-Verlag
- G. Tel: Topics in Distributed Algorithms, Cambridge University Press
- G. Tel: Introduction to Distributed Algorithms, Cambridge University Press, 2nd edition
- A.D. Kshemkalyani, M. Singhal: Distributed Computing, Cambridge University Press
- N. Lynch: Distributed Algorithms, Morgan Kaufmann Publ
252-0817-00LDistributed Systems Laboratory Information
Im Masterstudium können zusätzlich zu den Vertiefungsübergreifenden Fächern nur max. 10 Kreditpunkte über Laboratorien erarbeitet werden. Diese Labs gelten nur für das Masterstudium. Weitere Laboratorien werden auf dem Beiblatt aufgeführt.
10 KP9PG. Alonso, F. Mattern, T. Roscoe, R. Wattenhofer
KurzbeschreibungThis course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including wireless networks, ad-hoc networks, RFID, and distributed applications on smartphones.
LernzielGain hands-on-experience with real products and the latest technology in distributed systems.
InhaltThis course involves the participation in a substantial development and/or evaluation project involving distributed systems technology. There are projects available in a wide range of areas: from web services to ubiquitous computing including as well wireless networks, ad-hoc networks, and distributed application on smartphones. The goal of the project is for the students to gain hands-on-experience with real products and the latest technology in distributed systems. There is no lecture associated to the course.
For information of the course or projects available, please contact Prof. Mattern, Prof. Wattenhofer, Prof. Roscoe or Prof. G. Alonso.
252-3610-00LSmart Energy Information 3 KP2GF. Mattern, V. Tiefenbeck
KurzbeschreibungThe lecture covers the role of ICT for sustainable energy usage. Concepts of the emerging smart grid are outlined and approaches to motivate sustainable consumer choices are explained. The lecture combines technologies from ubiquitous computing and traditional ICT with insights from socio-psychological concepts and illustrates them with examples from actual applications.
LernzielParticipants become familiar with the challenges related to sustainable energy usage, understand the principles of a smart grid infrastructure and its applications, know the role of ubiquitous computing technologies, can explain the challenges regarding security and privacy, can reflect the basics cues to induce changes in consumer behavior, develop a general understanding of the effects of a smart grid infrastructure on energy efficiency, and know how to apply the learning to related design projects.
Inhalt- Background on energy generation and consumption; characteristics, potential, and limitations of renewable energy sources
- Introduction to energy economics
- Smart grid and smart metering infrastructures, virtual power plants, security challenges
- Demand managemenet and home automation using ubiquitous computing technologies
- Changing consumer behavior with smart ICT
- Benefits challenges of a smart energy system
LiteraturWill be provided during the course, though a good starting point is "ICT for green: how computers can help us to conserve energy" from Friedemann Mattern, Thosten Staake, and Markus Weiss (available at http://www.vs.inf.ethz.ch/publ/papers/ICT-for-Green.pdf).
Voraussetzungen / BesonderesThe lecture includes interactive exercises, case studies and practical examples.