Angelika Steger: Katalogdaten im Herbstsemester 2016

NameFrau Prof. Dr. Angelika Steger
LehrgebietInformatik (Theoretische Informatik)
Adresse
Inst. f. Theoretische Informatik
ETH Zürich, CAB G 37.2
Universitätstrasse 6
8092 Zürich
SWITZERLAND
Telefon+41 44 632 04 97
Fax+41 44 632 13 99
E-Mailsteger@inf.ethz.ch
URLhttp://www.cadmo.ethz.ch/as/people/professor/asteger/index
DepartementInformatik
BeziehungOrdentliche Professorin

NummerTitelECTSUmfangDozierende
252-0209-00LAlgorithms, Probability, and Computing Information 8 KP4V + 2U + 1AE. Welzl, M. Ghaffari, A. Steger, P. Widmayer
KurzbeschreibungAdvanced design and analysis methods for algorithms and data structures: Random(ized) Search Trees, Point Location, Minimum Cut, Linear Programming, Randomized Algebraic Algorithms (matchings), Probabilistically Checkable Proofs (introduction).
LernzielStudying and understanding of fundamental advanced concepts in algorithms, data structures and complexity theory.
SkriptWill be handed out.
LiteraturIntroduction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest;
Randomized Algorithms by R. Motwani und P. Raghavan;
Computational Geometry - Algorithms and Applications by M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf.
252-0417-00LRandomized Algorithms and Probabilistic Methods7 KP3V + 2U + 1AA. Steger, E. Welzl
KurzbeschreibungLas Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks
LernzielAfter this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas.
InhaltRandomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas.
SkriptYes.
Literatur- Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press (1995)
- Probability and Computing, Michael Mitzenmacher and Eli Upfal, Cambridge University Press (2005)
252-0851-00LAlgorithmen und Komplexität Information 4 KP2V + 1UA. Steger
KurzbeschreibungEinführung: RAM-Maschine, Datenstrukturen; Algorithmen: Sortieren, Medianbest., Matrixmultiplikation, kürzeste Pfade, min. spann. Bäume; Paradigmen: Divide&Conquer, dynam. Programmierung, Greedy; Datenstrukturen: Suchbäume, Wörterbücher, Priority Queues; Komplexitätstheorie: Klassen P und NP, NP-vollständig, Satz von Cook, Beispiele für Reduktionen.
LernzielNach dieser Vorlesung kennen die Studierenden einige Algorithmen und übliche Werkzeuge. Sie kennen die Grundlagen der Komplexitätstheorie und können diese verwenden um Probleme zu klassifizieren.
InhaltDie Vorlesung behandelt den Entwurf und die Analyse von Algorithmen und Datenstrukturen. Die zentralen Themengebiete sind: Sortieralgorithmen, Effiziente Datenstrukturen, Algorithmen für Graphen und Netzwerke, Paradigmen des Algorithmenentwurfs, Klassen P und NP, NP-Vollständigkeit, Approximationsalgorithmen.
SkriptJa. Wird zu Beginn des Semesters verteilt.
252-4101-00LACM-Lab
Findet dieses Semester nicht statt.
4 KP3PA. Steger
KurzbeschreibungSolve programming problems from previous ACM Programming Contests (see http://acm.uva.es/problemset/); learn and use efficient programming methods and algorithms.
LernzielThe objective of this course is to learn how to solve algorithmic problems given as descriptions in natural language, similar to those posed in ACM Programming Contests. This includes appropriate problem modeling, choice of suitable (combinatorial) algorithms, and their efficient implementation using C/C++ and the STL.
252-4202-00LSeminar in Theoretical Computer Science Information 2 KP2SE. Welzl, B. Gärtner, M. Hoffmann, J. Lengler, A. Steger, B. Sudakov
KurzbeschreibungPräsentation wichtiger und aktueller Arbeiten aus der theoretischen Informatik, sowie eigener Ergebnisse von Diplomanden und Doktoranden.
LernzielDas Lernziel ist, Studierende an die aktuelle Forschung heranzuführen und sie in die Lage zu versetzen, wissenschaftliche Arbeiten zu lesen, zu verstehen, und zu präsentieren.
263-0006-00LAlgorithms Lab6 KP4P + 1AA. Steger, E. Welzl, P. Widmayer
KurzbeschreibungStudents learn how to solve algorithmic problems given by a textual description (understanding problem setting, finding appropriate modeling, choosing suitable algorithms, and implementing them). Knowledge of basic algorithms and data structures is assumed; more advanced material and usage of standard libraries for combinatorial algorithms are introduced in tutorials.
LernzielThe objective of this course is to learn how to solve algorithmic problems given by a textual description. This includes appropriate problem modeling, choice of suitable (combinatorial) algorithms, and implementing them (using C/C++, STL, CGAL, and BGL).
LiteraturT. Cormen, C. Leiserson, R. Rivest: Introduction to Algorithms, MIT Press, 1990.
J. Hromkovic, Teubner: Theoretische Informatik, Springer, 2004 (English: Theoretical Computer Science, Springer 2003).
J. Kleinberg, É. Tardos: Algorithm Design, Addison Wesley, 2006.
H. R. Lewis, C. H. Papadimitriou: Elements of the Theory of Computation, Prentice Hall, 1998.
T. Ottmann, P. Widmayer: Algorithmen und Datenstrukturen, Spektrum, 2012.
R. Sedgewick: Algorithms in C++: Graph Algorithms, Addison-Wesley, 2001.