From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

Marcy Zenobi-Wong: Catalogue data in Spring Semester 2019

Name Prof. Dr. Marcy Zenobi-Wong
FieldCartilage Engineering and Regeneration
Address
Gewebetechnol. und Biofabrikation
ETH Zürich, HPL J 22
Otto-Stern-Weg 7
8093 Zürich
SWITZERLAND
Telephone+41 44 632 50 89
E-mailmarcy.zenobi@hest.ethz.ch
DepartmentHealth Sciences and Technology
RelationshipFull Professor

NumberTitleECTSHoursLecturers
376-0008-00LAdvanced Anatomy and Physiology II: Advanced Physiology and Pathophysiology Restricted registration - show details
Only for Health Sciences and Technology BSc.
4 credits4VK. De Bock, O. Bar-Nur, M. Detmar, G. A. Kuhn, M. Ristow, G. Schratt, C. Spengler, C. Wolfrum, M. Zenobi-Wong
AbstractIn-depth theory to molecular and pathophysiological aspects of nerves, muscles, heart , circulatory , respiratory and sensory organs .
ObjectiveIn-depth knowledge of anatomy and physiology.
ContentMolecular fundamentals of physiological processes, processes of disease development.
376-1392-00LMechanobiology: Implications for Development, Regeneration and Tissue Engineering3 credits2GA. Ferrari, K. Würtz-Kozak, M. Zenobi-Wong
AbstractThis course will emphasize the importance of mechanobiology to cell determination and behavior. Its importance to regenerative medicine and tissue engineering will also be addressed. Finally, this course will discuss how age and disease adversely alter major mechanosensitive developmental programs.
ObjectiveThis course is designed to illuminate the importance of mechanobiological processes to life as well as to teach good experimental strategies to investigate mechanobiological phenomena.
ContentTypically, cell differentiation is studied under static conditions (cells grown on rigid plastic tissue culture dishes in two-dimensions), an experimental approach that, while simplifying the requirements considerably, is short-sighted in scope. It is becoming increasingly apparent that many tissues modulate their developmental programs to specifically match the mechanical stresses that they will encounter in later life. Examples of known mechanosensitive developmental programs include osteogenesis (bones), chondrogenesis (cartilage), and tendogenesis (tendons). Furthermore, general forms of cell behavior such as migration, extracellular matrix deposition, and complex tissue differentiation are also regulated by mechanical stimuli. Mechanically-regulated cellular processes are thus ubiquitous, ongoing and of great clinical importance.

The overall importance of mechanobiology to humankind is illustrated by the fact that nearly 80% of our entire body mass arises from tissues originating from mechanosensitive developmental programs, principally bones and muscles. Unfortunately, our ability to regenerate mechanosensitive tissue diminishes in later life. As it is estimated that the fraction of the western world population over 65 years of age will double in the next 25 years, an urgency in the global biomedical arena exists to better understand how to optimize complex tissue development under physiologically-relevant mechanical environments for purposes of regenerative medicine and tissue engineering.
Lecture notesn/a
LiteratureTopical Scientific Manuscripts
376-1614-00LPrinciples in Tissue Engineering3 credits2VK. Maniura, J. Möller, M. Zenobi-Wong
AbstractFundamentals in blood coagulation; thrombosis, blood rheology, immune system, inflammation, foreign body reaction on the molecular level and the entire body are discussed. Applications of biomaterials for tissue engineering in different tissues are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed.
ObjectiveUnderstanding of molecular aspects for the application of biodegradable and biocompatible Materials. Fundamentals of tissue reactions (eg. immune responses) against implants and possible clinical consequences will be discussed.
ContentThis class continues with applications of biomaterials and devices introduced in Biocompatible Materials I. Fundamentals in blood coagulation; thrombosis, blood rheology; immune system, inflammation, foreign body reaction on the level of the entire body and on the molecular level are introduced. Applications of biomaterials for tissue engineering in the vascular system, skeletal muscle, heart muscle, tendons and ligaments, bone, teeth, nerve and brain, and drug delivery systems are introduced. Fundamentals in medical implantology, in situ drug release, cell transplantation and stem cell biology are discussed.
Lecture notesHandouts provided during the classes and references therin.
LiteratureThe molecular Biology of the Cell, Alberts et al., 5th Edition, 2009.
Principles in Tissue Engineering, Langer et al., 2nd Edition, 2002
376-1624-00LPractical Methods in Biofabrication Restricted registration - show details
Number of participants limited to 12.
5 credits4PM. Zenobi-Wong, S. Schürle-Finke, K. Würtz-Kozak
AbstractBiofabrication involves the assembly of materials, cells, and biological building blocks into grafts for tissue engineering and in vitro models. The student learns techniques involving the fabrication and characterization of tissue engineered scaffolds and the design of 3D models based on medical imaging data. They apply this knowledge to design, manufacture and evaluate a biofabricated graft.
ObjectiveThe objective of this course is to give students hands-on experience with the tools required to fabricate tissue engineered grafts. During the first part of this course, students will gain practical knowledge in hydrogel synthesis and characterization, fuse deposition modelling and stereolithography, bioprinting and bioink design, electrospinning, and cell culture and viability testing. They will also learn the properties of common biocompatible materials used in fabrication and how to select materials based on the application requirements. The students learn principles for design of 3D models. Finally the students will apply their knowledge to a problem-based project.
Prerequisites / NoticeNot recommended if passed 376-1622-00 Practical Methods in Tissue Engineering
376-1974-00LColloquium in Biomechanics Information 2 credits2KB. Helgason, S. J. Ferguson, R. Müller, J. G. Snedeker, B. Taylor, K. Würtz-Kozak, M. Zenobi-Wong
AbstractCurrent topics in biomechanics presented by speakers from academia and industry.
ObjectiveGetting insight into actual areas and problems of biomechanics.