Ralph Spolenak: Catalogue data in Autumn Semester 2016

Award: The Golden Owl
Name Prof. Dr. Ralph Spolenak
FieldNanometallurgy
Address
Institut für Metallforschung
ETH Zürich, HCI G 511
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telephone+41 44 632 25 90
Fax+41 44 632 11 01
E-mailralph.spolenak@mat.ethz.ch
URLhttps://met.mat.ethz.ch/
DepartmentMaterials
RelationshipFull Professor

NumberTitleECTSHoursLecturers
327-0501-AALMetals I
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RR. Spolenak
AbstractRepetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.
ObjectiveRepetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.
ContentDislocation theory:
Properties of dislocations, motion and kinetics of dislocations, dislocation-dislocation and dislocation-boundary interactions, consequences of partial dislocations, sessile dislocations
Hardening theory:
a. solid solution hardening: case studies in copper-nickel and iron-carbon alloys
b. particle hardening: case studies on aluminium-copper alloys
High temperature plasticity:
thermally activated glide
power-law creep
diffusional creep: Coble, Nabarro-Herring
deformation mechanism maps
Case studies in turbine blades
superplastizity
alloying effects
Lecture noteshttps://www.met.mat.ethz.ch/education/lect_scripts
LiteratureGottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Haasen, Physikalische Metallkunde, Springer Verlag
Rösler/Harders/Bäker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Hull/Bacon, Introduction to Dislocations, Butterworth & Heinemann
Courtney, Mechanical Behaviour of Materials, McGraw-Hill
327-0501-00LMetals I3 credits2V + 1UR. Spolenak
AbstractRepetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.
ObjectiveRepetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.
ContentDislocation theory:
Properties of dislocations, motion and kinetics of dislocations, dislocation-dislocation and dislocation-boundary interactions, consequences of partial dislocations, sessile dislocations
Hardening theory:
a. solid solution hardening: case studies in copper-nickel and iron-carbon alloys
b. particle hardening: case studies on aluminium-copper alloys
High temperature plasticity:
thermally activated glide
power-law creep
diffusional creep: Coble, Nabarro-Herring
deformation mechanism maps
Case studies in turbine blades
superplastizity
alloying effects
LiteratureGottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Haasen, Physikalische Metallkunde, Springer Verlag
Rösler/Harders/Bäker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Hull/Bacon, Introduction to Dislocations, Butterworth & Heinemann
Courtney, Mechanical Behaviour of Materials, McGraw-Hill
327-0612-AALMetals II
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RR. Spolenak
AbstractIntroduction to materials selection. Basic knowledge of major metallic materials: aluminium, magnesium, titanium, copper, iron and steel. Selected topics in high temperature materials: nickel and iron-base superalloys, intermetallics and refractory metals.
ObjectiveIntroduction to materials selection. Basic knowledge of major metallic materials: aluminium, magnesium, titanium, copper, iron and steel. Selected topics in high temperature materials: nickel and iron-base superalloys, intermetallics and refractory metals.
ContentThis course is devided into five parts:

A. Materials selection
Principles of materials properties maps
Introduction to the 'Materials selector' software package
Case studies

B. Light metals and alloys
Aluminium, magnesium, titanium
Properties and hardening mechanisms
Case studies in technological applications

C. Copper and its alloys

D. Iron and steel
The seven pros for steel
Fine grained steels, heat resistant steels
Steel and corrosion phenomena
Selection and application

E. High temperature alloys
Superalloys: iron, nickel, cobalt
Intermetallics: properties and application
Lecture noteshttp://www.met.mat.ethz.ch/education/lect_scripts
LiteratureGottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Ashby/Jones, Engineering Materials 1 & 2, Pergamon Press
Ashby, Materials Selection in Mechanical Design, Pergamon Press
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Bürgel, Handbuch Hochtemperatur-Werkstofftechnik, Vieweg Verlag
Prerequisites / NoticePrerequisites: Metals I
327-0712-00LNanometallurgy0 credits2SR. Spolenak
AbstractSeminar for Ph.D. students and researchers in the area of nanometallurgy.
ObjectiveDetailed education of researchers in the area of nanometallurgy.
327-1204-00LMaterials at Work I4 credits4SR. Spolenak, E. Dufresne, R. Koopmans
AbstractThis course attempts to prepare the student for a job as a materials engineer in industry. The gap between fundamental materials science and the materials engineering of products should be bridged. The focus lies on the practical application of fundamental knowledge allowing the students to experience application related materials concepts with a strong emphasis on case-study mediated learning.
ObjectiveTeaching goals:

to learn how materials are selected for a specific application

to understand how materials around us are produced and manufactured

to understand the value chain from raw material to application

to be exposed to state of the art technologies for processing, joining and shaping

to be exposed to industry related materials issues and the corresponding language (terminology) and skills

to create an impression of how a job in industry "works", to improve the perception of the demands of a job in industry
ContentThis course is designed as a two semester class and the topics reflect the contents covered in both semesters.

Lectures and case studies encompass the following topics:

Strategic Materials (where do raw materials come from, who owns them, who owns the IP and can they be substituted)
Materials Selection (what is the optimal material (class) for a specific application)
Materials systems (subdivisions include all classical materials classes)
Processing
Joining (assembly)
Shaping
Materials and process scaling (from nm to m and vice versa, from mg to tons)
Sustainable materials manufacturing (cradle to cradle) Recycling (Energy recovery)

After a general part of materials selection, critical materials and materials and design four parts consisting of polymers, metals, ceramics and coatings will be addressed.

In the fall semester the focus is on the general part, polymers and alloy case studies in metals. The course is accompanied by hands-on analysis projects on everyday materials.
LiteratureManufacturing, Engineering & Technology
Serope Kalpakjian, Steven Schmid
ISBN: 978-0131489653
Prerequisites / NoticeProfound knowledge in Physical Metallurgy and Polymer Basics and Polymer Technology required (These subjects are covered at the Bachelor Level by the following lectures: Metalle 1, 2; Polymere 1,2)