Jörg Stelling: Katalogdaten im Herbstsemester 2016

NameHerr Prof. Dr. Jörg Stelling
LehrgebietRechnergestützte Systembiologie
Adresse
Comput. Systems Biology, Stelling
ETH Zürich, BSS H 19.1
Klingelbergstrasse 48
4056 Basel
SWITZERLAND
Telefon+41 61 387 31 94
E-Mailjoerg.stelling@bsse.ethz.ch
DepartementBiosysteme
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
626-0002-AALBioinformatics
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
4 KP9RJ. Stelling, N. Beerenwinkel
KurzbeschreibungThe course introduces concepts of bioinformatics starting from first principles: DNA sequence alignment, phylogenetic tree inference, genome annotation, protein structure and function prediction. Key methods and algorithms are covered, including dynamic programming, Markov and Hidden Markov models, and molecular dynamics simulations. Practical applications and limitations are discussed.
LernzielThe course aims at introducing the fundamental concepts and methods of bioinformatics. Emphasis is given to a deep understanding of the methods' foundations and limitations to enable critical evaluations and applications of bioinformatics tools in areas such as biotechnology and systems biology.
InhaltFrom "Understanding Bioinformatics":
Chapter 4: Producing and Analyzing Sequence Alignments
Chapter 5: Pairwise Sequence Alignment and Database Searching
Chapter 6: Patterns, Profiles, and Multiple Alignments
Chapter 7: Recovering Evolutionary History
Chapter 8: Building Phylogenetic Trees
Chapter 9: Revealing Genome Features
Chapter 10: Gene Detection and Genome Annotation
Chapter 11: Obtaining Secondary Structure from Sequence
Chapter 12: Predicting Secondary Structures
Chapter 13: Modeling Protein Structure
Chapter 14: Analyzing Structure-Function Relationships

From "Biological Sequence Analysis":
Sections 3.1, 3.2, 3.3, 4.1, 4.2, 4.4, 5.2, 5.3, 5.4, 6.5 (Markov Chains and Hidden Markov Models)

From "A First Course in Systems Biology":
Chapter 1: Biological Systems
SkriptCourse material will be made available at: http://www.csb.ethz.ch
LiteraturZvelebil M, Baum JO. Understanding Bioinformatics. Garland Science, 2008.
Durbin R, Eddy S, Krogh A, Mitchinson G. Biological Sequence Analysis. Cambridge University Press, 2004.
Voit EO. A First Course in Systems Biology. Garland Science, 2012.
Voraussetzungen / BesonderesThere will be two opportunities for tutorials during the semester

http://www.csb.ethz.ch/teaching
636-0007-00LComputational Systems Biology Information 6 KP3V + 2UJ. Stelling
KurzbeschreibungStudy of fundamental concepts, models and computational methods for the analysis of complex biological networks. Topics: Systems approaches in biology, biology and reaction network fundamentals, modeling and simulation approaches (topological, probabilistic, stoichiometric, qualitative, linear / nonlinear ODEs, stochastic), and systems analysis (complexity reduction, stability, identification).
LernzielThe aim of this course is to provide an introductory overview of mathematical and computational methods for the modeling, simulation and analysis of biological networks.
InhaltBiology has witnessed an unprecedented increase in experimental data and, correspondingly, an increased need for computational methods to analyze this data. The explosion of sequenced genomes, and subsequently, of bioinformatics methods for the storage, analysis and comparison of genetic sequences provides a prominent example. Recently, however, an additional area of research, captured by the label "Systems Biology", focuses on how networks, which are more than the mere sum of their parts' properties, establish biological functions. This is essentially a task of reverse engineering. The aim of this course is to provide an introductory overview of corresponding computational methods for the modeling, simulation and analysis of biological networks. We will start with an introduction into the basic units, functions and design principles that are relevant for biology at the level of individual cells. Making extensive use of example systems, the course will then focus on methods and algorithms that allow for the investigation of biological networks with increasing detail. These include (i) graph theoretical approaches for revealing large-scale network organization, (ii) probabilistic (Bayesian) network representations, (iii) structural network analysis based on reaction stoichiometries, (iv) qualitative methods for dynamic modeling and simulation (Boolean and piece-wise linear approaches), (v) mechanistic modeling using ordinary differential equations (ODEs) and finally (vi) stochastic simulation methods.
Skripthttps://www.ethz.ch/content/specialinterest/bsse/computational-systems-biology/en/education/lectures/csb/LectureMaterial.html
LiteraturU. Alon, An introduction to systems biology. Chapman & Hall / CRC, 2006.

Z. Szallasi et al. (eds.), System modeling in cellular biology. MIT Press, 2006.
636-0301-00LCurrent Topics in Biosystems Science and Engineering2 KP1ST. Stadler, N. Beerenwinkel, Y. Benenson, K. M. Borgwardt, P. S. Dittrich, M. Fussenegger, A. Hierlemann, D. Iber, M. H. Khammash, D. J. Müller, S. Panke, P. Pantazis, R. Paro, R. Platt, S. Reddy, T. Schroeder, J. Stelling
KurzbeschreibungThis seminar will feature invited lectures about recent advances and developments in systems biology, including topics from biology, bioengineering, and computational biology.
LernzielTo provide an overview of current systems biology research.
InhaltThe final list of topics will be available at http://www.bsse.ethz.ch/education/.
636-0507-00LSynthetic Biology II Belegung eingeschränkt - Details anzeigen 4 KP4AS. Panke, Y. Benenson, J. Stelling
Kurzbeschreibung7 months biological design project, during which the students are required to give presentations on advanced topics in synthetic biology (specifically genetic circuit design) and then select their own biological system to design. The system is subsequently modeled, analyzed, and experimentally implemented. Results are presented at an international student competition at the MIT (Cambridge).
LernzielThe students are supposed to acquire a deep understanding of the process of biological design including model representation of a biological system, its thorough analysis, and the subsequent experimental implementation of the system and the related problems.
InhaltPresentations on advanced synthetic biology topics (eg genetic circuit design, adaptation of systems dynamics, analytical concepts, large scale de novo DNA synthesis), project selection, modeling of selected biological system, design space exploration, sensitivity analysis, conversion into DNA sequence, (DNA synthesis external,) implementation and analysis of design, summary of results in form of scientific presentation and poster, presentation of results at the iGEM international student competition (www.igem.org).
SkriptHandouts during course
Voraussetzungen / BesonderesThe final presentation of the project is typically at the MIT (Cambridge, US). Other competing schools include regularly Imperial College, Cambridge University, Harvard University, UC Berkeley, Princeton Universtiy, CalTech, etc.

This project takes place between end of Spring Semester and beginning of Autumn Semester. Registration in April.

Please note that the number of ECTS credits and the actual work load are disconnected.