Vivianne Irene Otto: Catalogue data in Autumn Semester 2016

Name PD Dr. Vivianne Irene Otto
FieldPharmazeutische Biochemie
Address
Inst. f. Pharmazeutische Wiss.
ETH Zürich, HCI H 415
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telephone+41 44 633 73 20
Fax+41 44 633 13 64
E-mailvivianne.otto@pharma.ethz.ch
DepartmentChemistry and Applied Biosciences
RelationshipPrivatdozentin

NumberTitleECTSHoursLecturers
535-0300-00LMolecular Mechanisms of Drug Actions and Targets Restricted registration - show details
Number of participants limited to 24.
1 credit1VV. I. Otto
AbstractOn average one drug per year is withdrawn from the market. Using selected examples of such drug failures, the course aims at analyzing and discussing the present explanations of drug actions as well as the design and predictive power of animal models and clinical trials. In addition, the ethical, societal, and economical expectations in new drugs shall be reflected.
ObjectiveTo develop a critical understanding of the relevance and limitations of the current approaches to explaining and anticipating drug effects. To critically appraise the ethical, societal, economical and political expectations in the development of new drugs.
ContentIn December 2006, Pfizer stopped a large phase III study on the use of Torcetrapib for the prevention of atherosclerosis and cardiovascular disease. 800 million $ in development costs and 21 billion $ in stocks were annihilated overnight. The failure of Torcetrapib has pinpointed the limitations of an extremely reductionist view of atherosclerosis and it's prevention by drug therapy. It has also highlighted what high expectations we have in a safe and wide applicability of drugs and of their economical success.
Torcetrapib is not a single case. In the last 10 years, on average one drug per year was withdrawn from the market due to lack of efficacy, unexpected side effects or toxicity. This clearly shows that the common investigations and the modern understanding of drug actions are often not sufficient to predict the effects a drug will have in large patient populations.
These are the topics of the present course. Using three particularly informative examples of drug failures, the problems encountered and the concepts and informative value of preclinical and clinical studies will be analyzed and discussed. Furthermore, the ethical, societal, economical and political expectations in new drugs shall be reflected.
Lecture notesPrintouts of the slides used for the lectures and literature for reading and discussions will be available online.
LiteratureRecommended reading: John Abramson, Overdo$ed America, Harper Perennial, New York 2008
Prerequisites / NoticeRequirements: basic knowledge in Medicinal Chemistry and Pharmacology. Ability to read and understand scientific publications written in English.
535-0310-00LGlycobiology in Drug Development1 credit1VV. I. Otto
AbstractProtein-based drugs constitute around 25% of new approvals and most of them are glycoproteins. Using selected examples the course aims at providing insight into our present knowledge on glycosylation-activity relationships and the production and analysis of glycoprotein-based drugs.
ObjectiveGaining insight into the glycobiology of therapeutically used glycoproteins. This implies knowing and understanding
- the major types of protein-linked glycans and their biosynthesis
- the most important expression systems for production of recombinant glycoproteins
- methods used to alter or manipulate glycosylation
- the most prominent clinically used glycoproteins and how glycosylation influences their therapeutic profile.
- Current methods for the qualitative and quantitative characterization of glycoproteins
and being able to apply this knowledge in other contexts.
Contentlecture plan:
1. Introduction: Carbohydrates - "life's first language"
2. Tissue plasminogen activator (t-PA), glucocerebrosidase and the biosynthesis of N-glycans
3. PSGL-1 and the biosynthesis of O-glycans;
P-selectin and other lectins
4. The glycoprotein hormones and the production and analysis of therapeutic glycoproteins
5. Monoclonal antibodies and the modification of their therapeutic profile through glycoengineering
6. EPO "the same but different"
Lecture notesThe slides used for the lectures will be provided online
Literature- Essentials of Glycobiology 2nd edition, A. Varki, R.D. Cummings et al., Cold Spring Harbor Laboratory Press, New York 2009.
- Posttranslational Modification of Protein Biopharmaceuticals, G. Walsh (ed.), Wiley VCH, Weinheim 2009.
- Gentechnik, Biotechnik. Grundlagen und Wirkstoffe, 2. Auflage, Dingermann, Winckler, Zündorf, Wissenschaftliche Verlagsgesellschaft Stuttgart, 2011.
Prerequisites / NoticeRequirements: Basic knowledge in immunology, molecular biology, protein chemistry and analytics. Basic knowledge in pharmacology.