Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

Markus Reiher: Katalogdaten im Herbstsemester 2016

NameHerr Prof. Dr. Markus Reiher
LehrgebietTheoretische Chemie
Adresse
Lab. für Physikalische Chemie
ETH Zürich, HCI F 235
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Auszeichnung: Die Goldene Eule
Telefon+41 44 633 43 08
E-Mailmarkus.reiher@phys.chem.ethz.ch
DepartementChemie und Angewandte Biowissenschaften
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
401-3667-66LCase Studies Seminar (Autumn Semester 2016)3 KP2SV. C. Gradinaru, R. Hiptmair, M. Reiher
KurzbeschreibungIn der Lehrveranstaltung Fallstudien präsentieren ETH-interne und -externe Referenten Fallbeispiele aus ihren eigenen Anwendungsgebieten. Zudem müssen die Studierenden einen Kurzvortrag (10 Minuten) halten aus einer Liste von publizierten Arbeiten.
Lernziel
401-5940-00LSeminar in Chemistry for CSE4 KP2SP. H. Hünenberger, M. Reiher
KurzbeschreibungThe student will carry out a literature study on a topic of his or her liking or suggested by the supervisor in the area of computer simulation in chemistry, the results of which are to be presented both orally and in written form.

For more information: www.csms.ethz.ch/education/RW
Lernziel
529-0003-00LAdvanced Quantum Chemistry7 KP3GM. Reiher, S. Knecht
KurzbeschreibungAdvanced, but fundamental topics central to the understanding of theory in chemistry and for solving actual chemical problems with a computer.
Examples are:
* Operators derived from principles of relativistic quantum mechanics
* Relativistic effects + methods of relativistic quantum chemistry
* Open-shell molecules + spin-density functional theory
* New electron-correlation theories
LernzielThe aim of the course is to provide an in-depth knowledge of theory and method development in theoretical chemistry. It will be shown that this is necessary in order to be able to solve actual chemical problems on a computer with quantum chemical methods.

The relativistic re-derivation of all concepts known from (nonrelativistic) quantum mechanics and quantum-chemistry lectures will finally explain the form of all operators in the molecular Hamiltonian - usually postulated rather than deduced. From this, we derive operators needed for molecular spectroscopy (like those required by magnetic resonance spectroscopy). Implications of other assumptions in standard non-relativistic quantum chemistry shall be analyzed and understood, too. Examples are the Born-Oppenheimer approximation and the expansion of the electronic wave function in a set of pre-defined many-electron basis functions (Slater determinants). Overcoming these concepts, which are so natural to the theory of chemistry, will provide deeper insights into many-particle quantum mechanics. Also revisiting the workhorse of quantum chemistry, namely density functional theory, with an emphasis on open-shell electronic structures (radicals, transition-metal complexes) will contribute to this endeavor. It will be shown how these insights allow us to make more accurate predictions in chemistry in practice - at the frontier of research in theoretical chemistry.
Inhalt1) Introductory lecture: basics of quantum mechanics and quantum chemistry
2) Einstein's special theory of relativity and the (classical) electromagnetic interaction of two charged particles
3) Klein-Gordon and Dirac equation; the Dirac hydrogen atom
4) Numerical methods based on the Dirac-Fock-Coulomb Hamiltonian, two-component and scalar relativistic Hamiltonians
5) Response theory and molecular properties, derivation of property operators, Breit-Pauli-Hamiltonian
6) Relativistic effects in chemistry and the emergence of spin
7) Spin in density functional theory
8) New electron-correlation theories: Tensor network and matrix product states, the density matrix renormalization group
9) Quantum chemistry without the Born-Oppenheimer approximation
SkriptA set of detailed lecture notes will be provided, which will cover the whole course.
Literatur1) M. Reiher, A. Wolf, Relativistic Quantum Chemistry, Wiley-VCH, 2014, 2nd edition
2) F. Schwabl: Quantenmechanik für Fortgeschrittene (QM II), Springer-Verlag, 1997
[english version available: F. Schwabl, Advanced Quantum Mechanics]
3) R. McWeeny: Methods of Molecular Quantum Mechanics, Academic Press, 1992
4) C. R. Jacob, M. Reiher, Spin in Density-Functional Theory, Int. J. Quantum Chem. 112 (2012) 3661
http://onlinelibrary.wiley.com/doi/10.1002/qua.24309/abstract
5) K. H. Marti, M. Reiher, New Electron Correlation Theories for Transition Metal Chemistry, Phys. Chem. Chem. Phys. 13 (2011) 6750
http://pubs.rsc.org/en/Content/ArticleLanding/2011/CP/c0cp01883j
6) K.H. Marti, M. Reiher, The Density Matrix Renormalization Group Algorithm in Quantum Chemistry, Z. Phys. Chem. 224 (2010) 583
http://www.oldenbourg-link.com/doi/abs/10.1524/zpch.2010.6125
7) E. Mátyus, J. Hutter, U. Müller-Herold, M. Reiher, On the emergence of molecular structure, Phys. Rev. A 83 2011, 052512
http://pra.aps.org/abstract/PRA/v83/i5/e052512

Note also the standard textbooks:
A) A. Szabo, N.S. Ostlund. Verlag, Dover Publications
B) I. N. Levine, Quantum Chemistry, Pearson
C) T. Helgaker, P. Jorgensen, J. Olsen: Molecular Electronic-Structure Theory, Wiley, 2000
D) R.G. Parr, W. Yang: Density-Functional Theory of Atoms and Molecules, Oxford University Press, 1994
E) R.M. Dreizler, E.K.U. Gross: Density Functional Theory, Springer-Verlag, 1990
Voraussetzungen / BesonderesStrongly recommended (preparatory) courses are: quantum mechanics and quantum chemistry
529-0470-00LLiterature Seminar in Theoretical Chemistry Information 0 KP2SM. Reiher
KurzbeschreibungIn depth study of selected recent papers on theoretical chemistry
LernzielDoktorats- und Mitarbeiterschulung
InhaltVariiert nach aktuellem Stand der Forschung
LiteraturWill be announced on www.reiher.ethz.ch/courses-and-seminars.html
529-0479-00LTheoretical Chemistry, Molecular Spectroscopy and Dynamics1 KP2SF. Merkt, M. Quack, M. Reiher, R. Signorell, H. J. Wörner
KurzbeschreibungSeminar on theoretical chemistry, molecular spectroscopy and dynamics.
Lernziel
529-0483-AALStatistical Physics and Computer Simulation
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
4 KP9RM. Reiher
KurzbeschreibungDie statistische Mechanik verbindet die detaillierte Beschreibung der mikroskopischen Viel-Teilchen-Dynamik mit der phänomenologischen, gemittelten Beschreibung des makroskopischen Benehmens eines Systems. Sie wird mittels Computersimulationen dargelegt. Prinzipien und Anwendungen der statistischen Mechanik und Gleichgewichts-Molekulardynamik; Monte-Carlo-Verfahren.
LernzielEinführung in die statistische Mechanik mit Hilfe von Computersimulationen, erwerben der Fertigkeit Computersimulationen durchzuführen und die Resultate zu interpretieren.
InhaltDie statistische Mechanik verbindet die detaillierte Beschreibung der mikroskopischen Viel-Teilchen-Dynamik mit der phänomenologischen, gemittelten Beschreibung des makroskopischen Benehmens eines Systems. Die statistisceh Mechanik wird mit Hilfe von Computersimulationen dargelegt.
Prinzipien und Anwendungen der statistischen Mechanik und Gleichgewichts-Molekulardynamik; Monte-Carlo-Verfahren; Prinzipien und Anwendungen der stochastischen Dynamik; Einführung und Anwendungne der Nichtgleichgewichts-Molekulardynamik.
Skriptvorhanden
Literatursiehe "Course Schedule"
Voraussetzungen / BesonderesZusätzliche Informationen werden bei Veranstaltungsbeginn bekanntgegeben.
529-0490-00LSpecial Topics in Theoretical Chemistry0 KP1SM. Reiher
KurzbeschreibungWeekly seminar programme on special topics in theoretical and quantum chemistry. Talks delivered by PhD students and PostDocs as well as by external speakers.
Lernzieladvanced course for PhD students and postdoctoral fellows
Inhaltcurrent research topics in theoretical chemistry
Skriptnone
529-0491-00LSeminar in Computational Chemistry C40 KP2SH. P. Lüthi, P. H. Hünenberger, M. Reiher, S. Riniker
Kurzbeschreibung
Lernziel
529-0499-00LPhysical Chemistry1 KP1KB. H. Meier, G. Jeschke, F. Merkt, M. Quack, M. Reiher, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner
KurzbeschreibungInstitute-Seminar covering current research Topics in Physical Chemistry
Lernziel