Andrea Frangi: Catalogue data in Autumn Semester 2017

Name Prof. Dr. Andrea Frangi
Address
Inst. f. Baustatik u. Konstruktion
ETH Zürich, HIL E 45.1
Stefano-Franscini-Platz 5
8093 Zürich
SWITZERLAND
Telephone+41 44 633 26 40
E-mailfrangi@ibk.baug.ethz.ch
URLhttp://www.frangi.ibk.ethz.ch/
DepartmentCivil, Environmental and Geomatic Engineering
RelationshipAdjunct Professor

NumberTitleECTSHoursLecturers
101-0169-00LTimber Structures II Restricted registration - show details
Prerequisite: Timber Structures I (101-0168-00L)
3 credits2GA. Frangi, R. Jockwer, M. Klippel, R. Steiger
AbstractBasic knowledge of structural timber design including material behaviour especially anisotropy, moisture and long duration effects and their consideration in structural analysis and detailing. Design, detailing and structural analysis of timber roof structures, buildings and bridges.
ObjectiveComprehension and application of basic knowledge of structural timber design including material behaviour especially anisotropy, moisture and long duration effects and their consideration in structural analysis and detailing. Design, detailing and structural analysis of timber roof structures, buildings and bridges.
ContentField of application of timber structures; Timber as building material (wood structure, physical and mechanical properties of wood and wood-based products); Durability; Principles of design and dimensioning; Connections (dowels, nails, screws, glued connections); Timber components and assemblies (mechanically jointed beams, trusses); Design and detaling of timber roof structures, buildings and bridges.
Lecture notesAutography Timber Structures
Copies of lecture slides
LiteratureTimber design tables HBT 1, Lignum (2012)
Swiss Standard SIA 265 (2012)
Swiss Standard SIA 265/1 (2009)
Prerequisites / NoticeTimber Structures I
101-0637-01LWood and Wood Composites3 credits2GA. Frangi, I. Burgert, G. Fink, M. Fontana, R. Steiger
AbstractKnowledge of characteristic properties of wood as a anisotropic and porous material and their consideration in structural timber design. History, ecology, structure of timber, drying, material properties, influence of moisture and creep. Durability and grading.
Solid timber, glued laminated timber and wood composites.
Fire behaviour and fire design.
ObjectiveKnowledge of characteristic properties of wood as a anisotropic and porous material and their consideration in structural timber design. Knowledge about history, ecology, structure of timber, drying, material properties, influence of moisture and creep, durability and grading.
Knowledge about material properties and field of applications of solid timber, glued laminated timber and wood composites.
Design of timber in fire.
ContentCharacteristic properties of wood as a anisotropic and porous material and their consideration in structural timber design. History, ecology, structure of timber, drying, material properties, influence of moisture and creep, grading. Durability.
Material properties and field of applications of solid timber, glued laminated timber and wood composites.
Fire safety and fire design.
Case studies.
Lecture notesPower Point slides. Further literature.
Literature- U. Lohmann: Holzhandbuch, 2. Aufl., DRW-Verlag Stuttgart, 1982
- R. von Halasz, C. Scheer (Hrsg.): Holzbau-Taschenbuch, Band 1: Grundlagen, Entwurf und Konstruktionen, 8. Aufl., Verlag Ernst & Sohn, Berlin., 1986
Prerequisites / NoticeDie Vorlesung ist mit einer halbtägigen Exkursion verbunden.

Voraussetzungen: Grundkenntnisse der Baustoffkunde
101-1187-00LColloquium in Structural Engineering0 credits2KB. Stojadinovic, E. Chatzi, M. Fontana, A. Frangi, W. Kaufmann, B. Sudret, T. Vogel
AbstractProfessors from national and international universities, technical experts from the industry as well as research associates of the institute of structural engineering (IBK) are invited to present recent research results and specific projects from the practice. This colloquium is adressed to members of universities, practicing engineers and interested persons in general.
ObjectiveLearn about recent research results in structural engineering.