Jérôme Faist: Catalogue data in Autumn Semester 2018

Name Prof. Dr. Jérôme Faist
Institut für Quantenelektronik
ETH Zürich, HPT F 5
Auguste-Piccard-Hof 1
8093 Zürich
Telephone+41 44 633 72 80
RelationshipFull Professor

402-0053-00LPhysics II8 credits4V + 2UJ. Faist
AbstractThe goal of the Physics II class is an introduction to quantum mechanics
ObjectiveTo work effectively in many areas of modern engineering, such as renewable energy and nanotechnology, students must possess a basic understanding of quantum mechanics. The aim of this course is to provide this knowledge while making connections to applications of relevancy to engineers. After completing this course, students will understand the basic postulates of quantum mechanics and be able to apply mathematical methods for solving various problems including atoms, molecules, and solids. Additional examples from engineering disciplines will also be integrated.
- The Photon of Planck and Einstein
- Wave mechanics: the old quantum theory
- Postulates and formalism of Quantum Mechanics
- First application: the quantum well and the harmonic Oscillator
- QM in three dimension: the Hydrogen atom
- Identical particles: Pauli's principle
- Crystalline Systems and band structures
- Quantum statistics
- Approximation Methods
- Applications in Engineering
- Entanglement and superposition
Lecture notesLecture notes (Some in as a Latex script and some hand-written) will be distributed via the Moodle interface
LiteratureDavid J. Griffiths, "Introduction to quantum mechanics" Second edition, Cambridge University Press.

Prerequisites / NoticePrerequisites: Physics I.
402-0101-00LThe Zurich Physics Colloquium Information 0 credits1KR. Renner, G. Aeppli, C. Anastasiou, G. Blatter, S. Cantalupo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, T. K. Gehrmann, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, T. C. Schulthess, M. Sigrist, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg
AbstractResearch colloquium
402-0465-58LIntersubband Optoelectronics6 credits2V + 1UJ. Faist, G. Scalari
AbstractIntersubband transitions in quantum wells are transitions between states created by quantum confinement in ultra-thin layers of semiconductors. Because of its inherent taylorability, this system can be seen as the "ultimate quantum designer's material".
ObjectiveThe goal of this lecture is to explore both the rich physics as well as the application of these system for sources and detectors. In fact, devices based on intersubband transitions are now unlocking large area of the electromagnetic spectrum.
ContentThe lecture will treat the following chapters:
- Introduction: intersubband optoelectronics as an example of quantum engineering
-Technological aspects
- Electronic states in semiconductor quantum wells
- Intersubband absorption and scattering processes
- Mid-Ir and THz ISB Detectors
-Mid-infrared and THz photonics: waveguides, resonators, metamaterials
- Quantum Cascade lasers:
-Mid-IR QCLs
-THZ QCLs (direct and non-linear generation)
-further electronic confinement: interlevel Qdot transitions and magnetic field effects
-Strong light-matter coupling in Mid-IR and THz range
Lecture notesThe reference book for the lecture is "Quantum Cascade Lasers" by Jerome Faist , published by Oxford University Press.
LiteratureMostly the original articles, other useful reading can be found in:

-E. Rosencher and B. Vinter, Optoelectronics , Cambridge Univ. Press
-G. Bastard, Wave mechanics applied to semiconductor heterostructures, Halsted press
Prerequisites / NoticeRequirements: A basic knowledge of solid-state physics and of quantum electronics.
402-0551-00LLaser Seminar0 credits1ST. Esslinger, J. Faist, J. Home, A. Imamoglu, U. Keller, F. Merkt, H. J. Wörner
AbstractResearch colloquium