Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Thomas Hofmann: Catalogue data in Spring Semester 2019

Name Prof. Dr. Thomas Hofmann
FieldData Analytics
Address
Dep. Informatik
ETH Zürich, CAB F 48.1
Universitätstrasse 6
8092 Zürich
SWITZERLAND
E-mailthomas.hofmann@inf.ethz.ch
URLhttp://www.inf.ethz.ch/department/faculty-profs/person-detail.html?persid=148752
DepartmentComputer Science
RelationshipFull Professor

NumberTitleECTSHoursLecturers
252-0945-08LDoctoral Seminar Machine Learning (FS19) Restricted registration - show details
Only for Computer Science Ph.D. students.

This doctoral seminar is intended for PhD students affiliated with the Instutute for Machine Learning. Other PhD students who work on machine learning projects or related topics need approval by at least one of the organizers to register for the seminar.
2 credits2SJ. M. Buhmann, T. Hofmann, A. Krause, G. Rätsch
AbstractAn essential aspect of any research project is dissemination of the findings arising from the study. Here we focus on oral communication, which includes: appropriate selection of material, preparation of the visual aids (slides and/or posters), and presentation skills.
ObjectiveThe seminar participants should learn how to prepare and deliver scientific talks as well as to deal with technical questions. Participants are also expected to actively contribute to discussions during presentations by others, thus learning and practicing critical thinking skills.
Prerequisites / NoticeThis doctoral seminar is intended for PhD students affiliated with the Instutute for Machine Learning. Other PhD students who work on machine learning projects or related topics need approval by at least one of the organizers to register for the seminar.
252-3005-00LNatural Language Understanding Information Restricted registration - show details
Number of participants limited to 200.
4 credits2V + 1UM. Ciaramita, T. Hofmann
AbstractThis course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.
ObjectiveThe objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.
ContentThis course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.
LiteratureLectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research and survey papers.
263-0008-00LComputational Intelligence Lab
Only for master students, otherwise a special permission by the study administration of D-INFK is required.
8 credits2V + 2U + 3AT. Hofmann
AbstractThis laboratory course teaches fundamental concepts in computational science and machine learning with a special emphasis on matrix factorization and representation learning. The class covers techniques like dimension reduction, data clustering, sparse coding, and deep learning as well as a wide spectrum of related use cases and applications.
ObjectiveStudents acquire fundamental theoretical concepts and methodologies from machine learning and how to apply these techniques to build intelligent systems that solve real-world problems. They learn to successfully develop solutions to application problems by following the key steps of modeling, algorithm design, implementation and experimental validation.

This lab course has a strong focus on practical assignments. Students work in groups of three to four people, to develop solutions to three application problems: 1. Collaborative filtering and recommender systems, 2. Text sentiment classification, and 3. Road segmentation in aerial imagery.

For each of these problems, students submit their solutions to an online evaluation and ranking system, and get feedback in terms of numerical accuracy and computational speed. In the final part of the course, students combine and extend one of their previous promising solutions, and write up their findings in an extended abstract in the style of a conference paper.

(Disclaimer: The offered projects may be subject to change from year to year.)
Contentsee course description
401-5680-00LFoundations of Data Science Seminar Information 0 creditsP. L. Bühlmann, H. Bölcskei, J. M. Buhmann, T. Hofmann, A. Krause, A. Lapidoth, H.‑A. Loeliger, M. H. Maathuis, N. Meinshausen, G. Rätsch, S. van de Geer
AbstractResearch colloquium
Objective