Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Gunnar Jeschke: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Gunnar Jeschke
FieldElectron Paramagnetic Resonance
Address
Lab. für Physikalische Chemie
ETH Zürich, HCI F 227
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telephone+41 44 632 57 02
E-mailgunnar.jeschke@phys.chem.ethz.ch
DepartmentChemistry and Applied Biosciences
RelationshipFull Professor

NumberTitleECTSHoursLecturers
529-0432-00LPhysical Chemistry IV: Magnetic Resonance4 credits3GB. H. Meier, M. Ernst, G. Jeschke, R. Riek
AbstractTheoretical foundations of magnetic resonance (NMR,EPR) and selected applications.
ObjectiveIntroduction to magnetic resonance in isotropic and anisotropic phase.
ContentThe course gives an introduction to magnetic resonance spectroscopy (NMR and EPR) in liquid, liquid crystalline and solid phase. It starts from a classical description in the framework of the Bloch equations. The implications of chemical exchange are studied and two-dimensional exchange spectroscopy is introduced. An introduction to Fourier spectroscopy in one and two dimensions is given and simple 'pulse trickery' is described. A quantum-mechanical description of magnetic resonance experiments is introduced and the spin Hamiltonian is derived. The chemical shift term as well as the scalar, dipolar and quadrupolar terms are discussed. The product-operator formalism is introduced and various experiments are described, e.g. polarization transfer. Applications in chemistry, biology, physics and medicine, e.g. determination of 3D molecular structure of dissolved molecules, determination of the structure of paramagnetic compounds and imaging (MRI) are presented.
Lecture noteshanded out in the lecture (in english)
Literaturesee http://www.ssnmr.ethz.ch/education/PC_IV_Lecture
529-0433-00LAdvanced Physical Chemistry: Statistical Thermodynamics7 credits3GG. Jeschke
AbstractIntroduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.
ObjectiveIntroduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data.
ContentBasics of statistical mechanics and thermodynamics of classical and quantum systems. Concept of ensembles, microcanonical and canonical ensembles, ergodic theorem. Molecular and canonical partition functions and their connection with classical thermodynamics. Translational, rotational, vibrational, electronic and nuclear spin partition functions of gases. Determination of the equilibrium constants of gas phase reactions. Transition state theory and its connection with collision theory. Description of ideal gases and ideal crystals.
Lecture notesSee homepage of the lecture.
LiteratureSee homepage of the lecture.
Prerequisites / NoticeChemical Thermodynamics, Reaction Kinetics, Molecular Quantum Mechanics and Spectroscopy; Mathematical Foundations (Analysis, Combinatorial Relations, Integral and Differential Calculus)
529-0441-00LSignal Processing Information 6 credits3GG. Jeschke, M. Yulikov
AbstractIntroduction of the basics of signal processing in spectroscopy. Fourier transformation, linear response theory, stochastic signals, digital data processing, Fourier spectroscopy.
ObjectiveBasics of signal processing in spectroscopy
ContentFourier series, Fourier transformation, Laplace transformation, delta functions, linear system theory. Basic concepts of electronics: electronic noise, modulation, filters, lock-in amplifier. Stochastic signals: parameters of random variables, characterization of stochastic processes, correlation functions, random signals in the frequency domain. Digital data processing: sampling processes, A/D conversion, discrete Fourier transformation, apodisation, digital filters.
Lecture notesScript available
529-0449-00LSpectroscopy13 credits13PE. C. Meister, G. Jeschke, B. H. Meier, F. Merkt, R. Riek, R. Signorell, H. J. Wörner
AbstractLaboratory experiments to acquire a profound knowledge of spectroscopical methods and techniques in chemistry. Evaluation and visualization of measurement data. Writing lab reports.
ObjectiveLaboratory experiments to acquire a profound knowledge of spectroscopical methods and techniques in chemistry. Evaluation and visualization of measurement data. Writing lab reports.
ContentLaboratory experiments: UV/VIS spectroscopy, luminescence spectroscopy, FT infrared spectroscopy, dye laser, light diffraction and refraction, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), FT nuclear magnetic resonance spectroscopy (NMR), electron paramagnetic resonance spectroscopy (EPR), atomic force microscopy (AFM), Fourier transform methods.
Lecture notesDetailed documentations to each experiment will be handed out.
E. Meister, Grundpraktikum Physikalische Chemie, 2. Auflage, vdf Hochschulverlag an der ETH, Zürich 2012.
Prerequisites / NoticePraktikum Physikalische und Analytische Chemie (529-0054-00) or
Praktikum Physikalische Chemie (529-0054-01).
529-0499-00LPhysical Chemistry1 credit1KB. H. Meier, G. Jeschke, F. Merkt, M. Quack, M. Reiher, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner
AbstractInstitute-Seminar covering current research Topics in Physical Chemistry
Objective