Michele Magno: Katalogdaten im Frühjahrssemester 2021

NameHerr Dr. Michele Magno
Adresse
Zentr. f. projektbasiertes Lernen
ETH Zürich, ETZ D 97.4
Gloriastrasse 35
8092 Zürich
SWITZERLAND
Telefon+41 44 632 66 86
E-Mailmichele.magno@pbl.ee.ethz.ch
DepartementInformationstechnologie und Elektrotechnik
BeziehungDozent

NummerTitelECTSUmfangDozierende
227-0085-02LProjekte & Seminare: Game Development with Unity Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
3 KP3PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielGame Development is a big field and is constantly growing. A powerful tool to create cross-platform games is Unity. Unity is a cross-platform real-time game engine that uses C# as its programming language (very similar to Java). This P&S is a
great chance for gaining practical experience, creating something from scratch and establishing a supporting community. Therefore, if you are eager to improve your coding skills as well as bring them to life by applying them to game development, this is the right P&S for you!
227-0085-04LProjekte & Seminare: Microcontrollers for Sensors and Internet of Things Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
4 KP4PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielUltra Low Power Microcontroller (MCU) – Firmware Programming and Sensors Interfacing using an Arm Cortex-M (STM32) Microcontroller

Microprocessors are used to execute big and generic applications, while microcontrollers are low cost and low power embedded chips with program memory and data memory built onto the system which are used to execute simple tasks within one specific application (i.e. sensor devices, wearable systems, and IoT devices). Microcontrollers demand very precise and resource-saving programming, therefore it is necessary to know the processor core, and particular importance has the investigation of the microcontroller's hardware components (ADC, clocks, serial communication, timers, interrupts, etc.).

The STM32 from STMicroelectronics has gained in popularity in recent years due to its low power and ease of use. The goal of this course is the development of understanding the internal processes in the microcontroller chip from TI. This will enable you to conduct high-level-firmware-programming of microcontrollers, to learn about the STM32 MCU features, benefits, and programming and how they can be connected with sensors, acquire the data, processing them and send the information to other devices. The course will also include an introductive lecture on machine learning and artificial intelligence on the embedded system and in particular microcontrollers. The C language will be used to program the microcontroller.

The course will be taught in English.
227-0085-05LProjekte & Seminare: Fast Signal Acquisition and Processing for Quantum Experiments using FPGA Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
2 KP2PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielFPGAs are used in wide range of applications including video processing, machine learning, cryptography and radar signal processing, thanks to their flexibility and massive parallel processing power. Recently FPGAs have become important in quantum signal processing where high amount of data should be analyzed in a short time to use quantum setups most efficiently. In addition, FPGAs are used for quantum state detection and feedback generation, which have to be performed in the scale of hundreds of nanoseconds. The goal of this course is to understand the FPGA based signal processing for superconducting circuits based quantum experiments. The course participants will learn the implementation techniques of the modules for fast quantum signal acquisition and processing, the electronics supporting quantum experiments, and FPGA programming. You will implement quantum signal processing and quantum state detection modules using Xilinx FPGA, Verilog HDL, and high speed ADC. The course will be taught in English. No prior knowledge in quantum physics or FPGA is required, still a good knowledge in any coding language (for example C or Java) is required.
227-0085-08LProjekte & Seminare: Bluetooth Low Energy Programming for IoT Sensing System Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
3 KP3PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielBluetooth Low Energy System on Chip – Firmware Programming and sensors Interfacing using an Arm Cortex-M (Nordic nrf52838) Microcontroller

With the introduction of the BLE 5.0 standard, Bluetooth has achieved high data bandwidth with low power consumption. This makes the technology an ideal match for many applications, i.e., IoT sensor application or audio streaming, by addressing two of the greatest bottlenecks of these devices. This course offers the chance for participants to do hands-on programming of microcontrollers. In particular, the focus will be laid on interfacing with sensors, acquisition of data, on-board event-driven data processing with ARM-Cortex-M4 processors and BLE or other wireless transmissions. The programming will be performed in C. Today’s microcontrollers offer a low power, efficient and cost-effective solution of tackling a nearly infinite number of task-specific applications. Ranging from IoT devices, wearable systems, sensor (mesh) devices, all the way to be integrated as submodules for the most complex system such as cars, planes, and rockets. Microcontrollers derive their advantages from the efficient use of resources and as such require very efficient and resource-saving programming. Therefore, it is mandatory to understand hardware components such as processor cores, ADC, clocks, serial communication, wireless communication, timers, interrupts, etc. The P&S includes five weeks project where the student will setup an IoT sensor node to monitor electric power transmission and distribution system.

The course will be taught in English by the ITET center for project based learning.
227-0085-26LProjekte & Seminare: Biosignal Acquisition and Processing for IoT Wearable Devices Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
3 KP3PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielBiosignal acquisition and processing – Wearable sensor node design and analysis for bio-impedance sensor using an Arm Cortex-M (Nordic nrf52838) Microcontroller
Wearable smart sensor electronics has the potential to revolutionize the medical field. Various body conformal flexible sensors have been used to monitor motion and physiological electrical signals such as electrocardiography (ECG), electroencephalography (EEG) and body composition analysis via body bio-impedance measurements. Smart sensor nodes not only provide accurate and continuous data in time but also automate the process of maintaining medical records, thereby lowering the workload oft he health worker or clinician. This course offers an avenue for the students to understand the interdisciplinary principles that make it possible to interpret human physiology by utilizing discreet electronic components. Most importantly, participants will get a chance to do hands-on system design specific to electronically tracking a particular physiological phenomenon. In particular, the focus will be laid on programming of micro controllers, interfacing with sensors, acquisition of data and utilizing discreet analog elements for bio-signal processing. The programming will be performed in C.


The course will be taught in English and by the ITET center for project based learning.
227-0085-27LProjekte & Seminare: Android Application Development (AAD) Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
4 KP3PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielAndroid Applications – Programming and development of Application - Android Studio – Smart Phone Sensors – GPS and Google Maps.

Although the App-Industry is dominated by the giant Apps right now, it is still crucial that one knows how those Apps function and how those Apps are communicating with their hardware. This course offers the opportunity for the participants to understand the development of application using Android Studio. Most importantly, participants will get a chance to do hands-on software design specific to Android smartphone and the data acquisition from sensors, GPS, google maps and other internal devices. The main goal of the course if providing the students with the basic principle and software programming for build up every android application. The course include 4-5 weeks project were the students alone or in group will build up a working demo of a target application. The course will conclude with the presentation of the students work. Previous experience in C/Java or other languages is preferable but not mandatory. The students will program their own Android Smartphone.

The course will be taught in English by the new Project-based learning centre.
227-0085-28LProjekte & Seminare: iCEBreaker FPGA For IoT Sensing Systems Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
3 KP3PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielUltra Low Lattice FPGA – High Level Programming – Peripehrals Interfacing using an Lattice FPGA

Field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing , so they are also "field-programmable". The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC). However more and more nowdays producers and open source community are providing higher level toolls to program them similary than processors. On the other side still it is important know the hardware architectures. This course will give to the students the opportunity to program FPGA in a high level way and use them to connect with external peripherals such as display, sensors, etc. In particular, the course will use the iCEBreaker FPGA boards that is specifically designed for students and engineers . They work out of the box with the latest open source FPGA development tools and next-generation open CPU architectures. The course will also iCEBreaker can be expandable through its Pmod connectors, so the students can make use of a large selection of third-party modules. The course will include a project where the students will learn how to build a full working system for the next generation of Internet of Things intelligent smart sensing.

The course will be taught in English by the new D-ITET center for Project-based learning.
227-0085-29LProjekte & Seminare: Embedded Deep Learning with Huawei Atlas 200 AI Dev Kit Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
3 KP3PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielDeep neural networks (DNNs) have become the leading method for a wide range of data analytics tasks, after a series of major victories at the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). For ILSVRC, the task was to classify images into 1000 different classes, many of which are difficult to distinguish (e.g. many classes are different breeds of dogs). All that was given were 1.2 million labelled images. Meanwhile, this recipe for success has taken over many more areas, from image-based tasks like segmenting objects in images, detecting objects, enhancing images using super-resolution and compression artifact reduction, to robotics and reinforcement learning, and a wide range of industrial applications.
DNNs and their subtype convolutional neural networks (CNNs) have not been new in the 2013 when the wave of success has started, but they got this huge boost through the new availability of large-scale dataset and—at least as importantly—the availability of the necessary compute resources by using GPUs to perform the computations required during training.
While GPUs were then also used to stem the high computation effort of DNNs during inference (e.g. classifying images directly using a trained DNN rather than training the DNN itself). The high demand, the need for cost efficiency, and the goal of deploying DNNs not just in data centers but pervasively in everyday devices, wearables, and low-latency industrial or interactive applications, has triggered the development of various application-specific processors which are much faster, vastly more energy efficient, and cheaper at the same time—such as the Google TPU, Graphcore, …, and Huawei’s Ascend/Atlas platforms.

In this course, you will learn:
1) the basics of deep neural networks, how they work, and what challenges there are for inference,
2) how platforms with specialized hardware accelerators, specifically the Huawei Atlas 200, can be used for running DNN inference and getting a practical application running, and
3) work on your own project using DNNs and hardware accelerators based on your own ideas or on some of our proposals.

The course will be taught in English by the new D-ITET center for Project-Based Learning and a special guest lecturer from Huawei. Individual interactions/help can also be in (Swiss) German.
Most sessions will be around 1 hour of lecture and 2 hours of practical computer exercises. We will start an introduction and then you will have ca. 8 weeks to work on your project, which will concluded with a final presentation of your results.
227-0085-39LProjekte & Seminare: Python for Science & Machine Learning Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
3 KP3PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielThis beginner course to programming with Python - with a focus on applications in science and technology - is an ideal starting point for later courses. We will start with an introduction to the dev environment and tools for effective development to get you started. Then we will learn the basics of Python with exercises, and discover popular modules for data processing and visualisation that will be useful for your later studies and career. We conclude with an introduction to popular machine learning techniques and some time for you to implement your own small free-style projects.

By the end of the semester, you will
- be familiar with your PC’s command-line interface and know how to use available dev environments effectively.
- have learned the basics of Python and be able to write basic programs that do what you want (most of the time) with the help of modules.
- be able to process, visualize and analyze numerical data, e.g. lab measurements, images, etc.
- have first experience with machine learning techniques
- maintain your first git repository and know how to collaborate with others on coding projects.

Language: English / German (if necessary)
227-0085-45LProjekte & Seminare: Robotic Maze Solving with a TI-RSLK Robot (RMaze) Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
3 KP3PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielMicrocontroller programming (C) – Peripherals Interfacing using a MSP433 MCU – Control of a Robot in a maze

The course will focus on teaching how to build and program a Texas Instrument robotic system learning kit (TI-RSLK). It is a robot kit, which includes a 2 wheeled robot, a line sensor to determine lines on the floor as well as sensors to recognize walls. The robot is driven by a MSP432 state of the art ARM Cortex M4 processor.

This course will give the students the opportunity to learn how to program the microcontroller of this robot to navigate in a small maze. For this, the students will learn how to control the motors and, consequently the movement of the robot with the peripherals of the microcontroller. Next to the movement, also the control and readout of the attached sensors will be part of the P&S course.

Once the students are able to read sensor values and control the motors of the robot, this course will conclude with a 4-week project. Within this project the students will design their own algorithm, such that the robot can navigate autonomously within a maze. A small competition at the end of the P&S will find the fastest robot of the group.

The course will be taught in English by the new D-ITET center for Project-based learning, the programming toolchain will be installed on the student’s own laptop. Experience with microcontroller programming (C) is an advantage, however not required. A short introduction will be given during the course.

This course will be taught in English or in German if necessary.
227-0085-46LProjekte & Seminare: Embedded Systems With Drones Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
4 KP4PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielMicrocontrollers - Programming in C – Drones – Autonomous Drones – Embedded System – Sensors.


Drones can be fun to use but understanding the hardware and software and building and programming them to be intelligent and autonomous is even better. This course gives the basis of the embedded systems having the drones as the primary target. The course will introduce embedded systems and, in particular, the microcontroller ARM Cortex-M, focusing on all the crucial blocks such as Interrupts, GPIO, ADC's, Timers, and Serial communication protocols. Apart from the core topics, real-time and power-efficient algorithms for attitude and motor control are also discussed, making the drone efficient. Finally, exciting drone exercises are supported in the course to experiment with the development kit. The course will end with a 4-5 weeks project where the students will make the drone fly with some specific goal. It is not required any previous knowledge except C language.
The course will be taught in English and organized by the new Project-Based Learning center.
227-0085-48LProjekte & Seminare: Introduction to Program Nao Robots for Robocup Competition Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
4 KP4PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielProgramming Robots – Sensors- Humanoid Robot.

NAO robots from Softbank are the leading humanoid robot being used in research and education worldwide. Robotics is the fastest growing and most advanced technology used in education and research. The main goal of this course is to introduce and allowing the students to learn how to program an NAO humanoid robot to make him walk, talking, watching objects understanding the human, and reacting to external input. The Nao Robots used in this course are equipped with many sensors: Tactile Sensors, Ultrasonic sensors, A Gyro, An Accelerometer, Force Sensors, Infrared sensors, 2 HD Cameras, 4 Microphones, and high accuracy digital encoders on each joint. It has two processors on board: an Intel Atom 1.6Ghz (The main computer includes SSD drive, WiFi, Bluetooth, and wired network) and an additional ARM-9 processor in its chest.
The course will introduce the software package and the full SDK and API. The students will learn how to program ( mainly in C and Phyton) the robot to access the full functionality. To improve the hands-on skills of students the course will end with a 5 weeks project where the students in the group will compete in a small soccer game where the robots will play the game following and kicking a red ball. It is not requested any previous knowledge but programming skills are a plus.
The course will be taught in English and organized by the new Project-based Learning center.
227-0085-49LProjekte & Seminare: Smart Patch Projects Belegung eingeschränkt - Details anzeigen
Nur für Elektrotechnik und Informationstechnologie BSc.

Die Lerneinheit kann nur einmal belegt werden. Eine wiederholte Belegung in einem späteren Semester ist nicht anrechenbar.
4 KP4PM. Magno
KurzbeschreibungDer Bereich Praktika, Projekte, Seminare umfasst Lehrveranstaltungen in unterschiedlichen Formaten zum Erwerb von praktischen Kenntnissen und Fertigkeiten. Ausserdem soll selbstständiges Experimentieren und Gestalten gefördert, exploratives Lernen ermöglicht und die Methodik von Projektarbeiten vermittelt werden.
LernzielWearable devices, PCB Design, Firmware developing, multi-sensors, Communication.

The Smart Patch project will design autonomous, low power and mesh enabled multi-sensor wearable smart patches. They will be based on the always-on smart sensing paradigm to continuously acquire process and stream physiological data in real-time. They can be trained to autonomously detect illness symptoms or other physical conditions, such as stress. The students will work in a team to design a sub-block of the smart patch. According to the students' background, they will be associated swith designing the hardware or the firmware. Together in a team, they will learn how to structure problems and identify solutions, system analysis, and simulation, as well as presentation and documentation techniques. They will get access to D-ITET labs and state-of-the-art engineering tools (Matlab, Simulink, Firmware development IDE, PCB Design, etc.) The course will be done in coollaboartion with DZ Center at D-ITET.

The projects will be done under the Smart Patches: a flagship project for D-ITET students. (pbl.ee.ethz.ch)
227-0155-00LMachine Learning on Microcontrollers Belegung eingeschränkt - Details anzeigen
Number of participants limited to 40.
Registration in this class requires the permission of the instructors.
6 KP3GM. Magno, L. Benini
KurzbeschreibungMachine Learning (ML) and artificial intelligence are pervading the digital society. Today, even low power embedded systems are incorporating ML, becoming increasingly “smart”. This lecture gives an overview of ML methods and algorithms to process and extracts useful near-sensor information in end-nodes of the “internet-of-things”, using low-power microcontrollers (ARM-Cortex-M; RISC-V).
LernzielLearn how to Process data from sensors and how to extract useful information with low power microprocessors using ML techniques. We will analyze data coming from real low-power sensors (accelerometers, microphones, ExG bio-signals, cameras…). The main objective is to study in detail how Machine Learning algorithms can be adapted to the performance constraints and limited resources of low-power microcontrollers becoming Tiny Machine learning algorithms.
InhaltThe final goal of the course is a deep understanding of machine learning and its practical implementation on single- and multi-core microcontrollers, coupled with performance and energy efficiency analysis and optimization. The main topics of the course include:

- Sensors and sensor data acquisition with low power embedded systems

- Machine Learning: Overview of supervised and unsupervised learning and in particular supervised learning ( Decision Trees, Random, Support Vector Machines, Artificial Neural Networks, Deep Learning, and Convolutional Networks)

- Low-power embedded systems and their architecture. Low Power microcontrollers (ARM-Cortex M) and RISC-V-based Parallel Ultra Low Power (PULP) systems-on-chip.

- Low power smart sensor system design: hardware-software tradeoffs, analysis, and optimization. Implementation and performance evaluation of ML in battery-operated embedded systems.

The laboratory exercised will show how to address concrete design problems, like motion, gesture recognition, emotion detection, image, and sound classification, using real sensors data and real MCU boards.

Presentations from Ph.D. students and the visit to the Digital Circuits and Systems Group will introduce current research topics and international research projects.
SkriptScript and exercise sheets. Books will be suggested during the course.
Voraussetzungen / BesonderesPrerequisites: Good experience in C language programming. Microprocessors and computer architecture. Basics of Digital Signal Processing. Some exposure to machine learning concepts is also desirable.