Matthias Willmann: Catalogue data in Spring Semester 2015

Name Dr. Matthias Willmann
Address
Institut für Umweltingenieurwiss.
ETH Zürich, HIL G 35.2
Stefano-Franscini-Platz 5
8093 Zürich
SWITZERLAND
E-mailwillmann@ifu.baug.ethz.ch
URLhttp://www.groundwaterscientific.ch
DepartmentCivil, Environmental and Geomatic Engineering
RelationshipLecturer

NumberTitleECTSHoursLecturers
102-0448-00LGroundwater II6 credits4GM. Willmann
AbstractThe course is based on the course 'Groundwater I' and is a prerequisite for further applications of groundwater flow and contaminant transport models.
ObjectiveThe course should enable students to understand and apply methods and tools for groundwater flow and transport modelling.

the student should be able to
a) formulate practical flow and contaminant transport problems.

b) solve steady-state and transient flow and transport problems in 2 and 3 spatial dimensions using numerical codes based on the finite difference method and the finite element methods.

c) solve simple inverse flow problems for parameter estimation given measurements.

d) assess simple multiphase flow problems.

e) assess spatial variability of parameters and use of stochastic techniques in this task.

f) solve simple flow problems affected by fluid density.

g) assess simple coupled reactive transport problems.
ContentIntroduction and basic flow and contaminant transport equation.

Numerical solution of the 3D flow equation using the finite difference method.

Numerical solution to the flow equation using the finite element equation

Numerical solution to the transport equation using the finite difference method.

Numerical solution to the transport equation using the method of characteristics and the random walk method.

Numerical solution to the transport equation: Case studies.

Two-phase flow and Unsaturated flow problems.

Modelling of flow problems affected by fluid density.

Spatial variability of parameters and its geostatistical representation.

Geostatistics and stochastic modelling.

Reactive transport modelling.
Lecture notesHandouts
Literature- J. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979
- P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology, J. Wilson & Sons, New York, 1990

- Chiang und Kinzelbach, 3-D Groundwater Modeling with PMWIN. Springer, 2001.

- G. de Marsily, Quantitative Hydrogeology, Academic Press, 1986

- W. Kinzelbach und R. Rausch: Grundwassermodellierung, Eine Einführung mit Uebungen Gebrüder Bornträger, Berlin, 1995, ISBN 3-443-01032-6

- F. Stauffer: Strömungsprozesse im Grundwasser, Konzepte und Modelle vdf, 1998, ISBN 3-7281-2641-1
Prerequisites / NoticeThe exercises of the course are organized as a computer lab (one lesson per week). The computer lab will provide hands-on experience with groundwater modelling.
102-0455-AALGroundwater I
Enrolment only for MSc students who need this course as additional requirement.
3 credits2RM. Willmann
AbstractThe course provides an introduction into quantitavie analysis of groundwater flow and transport. It is focussed on formulating flow and transport problems in groundwater, which are to be solved analytically or numerically.
Objectivea) Students understand the basic concepts of flow and contaminant transport processes and boundary conditions in groundwater.

b) Students are able to formulate simple practical flow and transport problems.

c) Students are able to understand and apply simple analytical solutions to simple flow and transport problems.

d) Students are able to use simple numerical codes to adequately solve simple flow (and transport) problems.
ContentIntrodiction, aquifers, groundwater use, sustainability, porosity.

Properties of porous media.
Exercises: Groundwater use, porosity, grain size analysis.

Flow properties, Darcy's law, filter.

Flow equations, stream function.
Exercises: Darcy's law.

Analytical solutions, confined aquifers, steady-state flow.
Exercises: Head isolines.

Use of superposition principles, transient flow, freee surface flow.
Exercises: Analytical solutions to flow problems.

Finite difference solutions to flow problems I.
Exercises: Analytical solutions to flow problems.

Finite difference solutions to flow problems II.
Exercises: Finite differece formulations to flow problems.

Transport processes.
Exercises: Computer workshop using PMWIN.

Analytical solutions to transport problems I.
Exercises: Computer workshop using PMWIN.

Analytical solutions to transport problems II.
Exercises: Analytical solutions to transport problems.

Path lines, groundwater protection.
Exercises: Analytical solutions to transport problems.

Groundwater remediation, groundwater management.
Exercises: Groundwater remediation.
Lecture notesFolien auf Internet unter www.ihw.ethz.ch/GWH/education/index

Altes Skript auf Internet www.ihw.ethz.ch/GWH/education/index

Weitere Texte auf Internet www.ihw.ethz.ch/GWH/education/index

Didaktische Software auf Internet unter www.ihw.ethz.ch/GWH/education/index
LiteratureJ. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979

P.A. Domenico, F.W. Schwartz, Physical and Chemical Hydrogeology, J. Wilson & Sons, New York, 1990

W. Kinzelbach, R. Rausch, Grundwassermodellierung, Gebrüder Bornträger, Stuttgart, 1995

Krusemann, de Ridder, Untersuchung und Anwendung von Pumpversuchen, Verl. R. Müller, Köln, 1970

G. de Marsily, Quantitative Hydrogeology, Academic Press, 1986
102-0528-00LEnvironment and Computer Laboratory (Year Course) Restricted registration - show details 9 credits2PD. Braun, M. Holzner, E. Morgenroth, J. Wang, V. Weitbrecht, M. Willmann
AbstractTechnical systems are investigated in projects with experimental measurements and numerical modeling. The students learn how to answer given questions with target oriented methodologies.
ObjectiveTechnical systems are investigated in projects with measurement campaigns and numerical modelling. The students learn how to answer given questions with target oriented methodologies.
ContentThe following projects are conducted
- Construction, operation and characterization of a mini waste water treatment plant
- Characterization of aquifers with pumping experiments
- Modeling of hydrological systems
- Measuring and modeling of nanoparticles at workplaces
- Measuring and modeling of sediment transport in rivers
- Investigations of polluted terrain
Lecture notesWritten material will be available.