Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Eberhard Morgenroth: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Eberhard Morgenroth
FieldProcess Engineering in Urban Water Management
Institut für Umweltingenieurwiss.
ETH Zürich, HIL G 31.3
Stefano-Franscini-Platz 5
8093 Zürich
Telephone+41 44 633 48 30
DepartmentCivil, Environmental and Geomatic Engineering
RelationshipFull Professor

102-0214-AALIntroduction to Urban Water Management Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
6 credits4RE. Morgenroth, M. Maurer
AbstractIntroduction to urban water management (water supply, urban drainage, wastewater treatment, sewage sludge treatment). Introduction to Urban Water Management is a self-study course.
ObjectiveThis course provides an introduction and an overview over the topics of urban water management (water supply, urban drainage, wastewater treatment, sewage sludge treatment). It supports the understanding of the interactions of the relevant technical and natural systems. Simple design models are introduced.
ContentOverview over the field of urban water management.
Introduction into systems analysis.
Characterization of water and water quality.
Requirement of drinking water, production of wastewater and pollutants
Production and supply of drinking water.
Urban drainage, treatment of combined sewer overflow.
Wastewater treatment, nutrient elimination, sludge handling.
Planning of urban water infrastructure.
Lecture notesWater Supply and Pollution Control. 8th edition (2009).
By: Warren Viessman, Jr., Mark J. Hammer, Elizabeth M. Perez and Paul A. Chadik.
Pearson Prentice Hall, Upper Saddle River, NJ.
LiteratureIn this self-study course the students must work through and understand selected sections from the following book

Viessman, W., Hammer, M.J. and Perez, E.M. (2009) Water supply and pollution control,
Pearson Prentice Hall, Upper Saddle River, NJ.

Students must understand and be able to discuss the required reading in a 30 min oral exam. The required reading is explained in detail on the website of the professorships of urban water management. Additional information can be asked during the office hours of the professors' assistants.

The required reading and studying should correspond roughly the time invested in the course Siedlungswasserwirtschaft GZ. Students are welcome to ask the assistants ( for help with questions they have regarding the reading.
Prerequisites / NoticeSome students joining the MSc program in Environmental Engineering at ETH Zürich have to take additional courses from our BSc program. The decision of what courses to take is done at the time of admission at ETH.

The course on "Introduction to Urban Water Management" is offered at ETH Zürich only in German. Students who can speak and understand German must take the course (Siedlungswasserwirtschaft GZ) and get a passing grade. For students that do not have sufficient German language skills there is a self-study course and they have to take an oral exam.

This course is required for further in depth courses in urban water management.

Prerequisite: Hydraulics I and Hydrology
102-0217-00LProcess Engineering Ia Information 3 credits2GE. Morgenroth
AbstractBiological processes used in wastewater treatment, organic waste management, biological resource recovery. Focus on fundamental principles of biological processes and process design based on kinetic and stoichiometric principles. Processes include anaerobic digestion for biogas production and aerobic wastewater treatment.
ObjectiveStudents should be able to evaluate and design biological processes. Develop simple mathematical models to simulate treatment processes.
Microbial transformation processes
Introduction to design and modeling of activated sludge processes
Anaerobic processes, industrial applications, sludge stabilization
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase (see for further information).
Prerequisites / NoticeFor detailed information on prerequisites and information needed from Systems Analysis and Mathematical Modeling the student should consult the lecture program and important information (syllabus) of Process Engineering I that can be downloaded at
102-0217-01LProcess Engineering Ib Information
Prerequisite: 102-0217-00L Process Engineering Ia (1st half of semester).
3 credits2GE. Morgenroth
AbstractAdvanced environmental biotechnology for wastewater, waste, and also drinking water treatment. Suspended growth and biofilm based processes. Nitrogen, phosphorus, and sulfur cycle in biological processes. Advanced design and critical evaluation of treatment plants.
ObjectiveStudents should be able to evaluate existing wastewater treatment plants and future designs using basic process understanding, mathematical modeling tools, and knowledge obtained from the current literature. The students shall be capable to apply and recognize the limits of the kinetic models which have been developed to simulate these systems.
ContentAdvanced modeling of activated sludge systems
Nitrification, denitrification, and biological P elimination
Enrichment in mixed culture systems using, e.g., selectors
Biofilm kinetics and application to full scale plants
Critical review of treatment processes
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase (see for further information).
Prerequisites / NoticePrerequisit: 102-0217-00 Process Engineering Ia (in first half of semester).
102-0227-00LSystems Analysis and Mathematical Modeling in Urban Water Management Information 6 credits4GE. Morgenroth, M. Maurer
AbstractSystematic introduction of material balances, transport processes, kinetics, stoichiometry and conservation. Ideal reactors, residence time distribution, heterogeneous systems, dynamic response of reactors. Parameter identification, local sensitivity, error propagation, Monte Carlo simulation. Introduction to real time control (PID controllers). Extensive coding of examples in Berkeley Madonna.
ObjectiveThe goal of this course is to provide the students with an understanding and the tools to develop their own mathematical models, to plan experiments, to evaluate error propagation and to test simple process control strategies in the field of process engineering in urban water management.
ContentThe course will provide a broad introduction into the fundamentals of modeling water treatment systems. The topics are:
- Introduction into modeling and simulation
- The material balance equations, transport processes, transformation processes (kinetics, stoichiometry, conservation)
- Ideal reactors
- Hydraulic residence time distribution and modeling of real reactors
- Dynamic behavior of reactor systems
- Systems analytical tools: Sensitivity, parameter identification, error propagation, Monte Carlo simulation
- Introduction to process control (PID controller, fuzzy control)
Lecture notesCopies of overheads will be made available.
LiteratureThere will be a required textbook that students need to purchase:
Willi Gujer (2008): Systems Analysis for Water Technology. Springer-Verlag, Berlin Heidelberg
Prerequisites / NoticeThis course will be offered together with the course Process Engineering Ia. It is advantageous to follow both courses simultaneously.
102-0515-01LEnvironmental Engineering Seminars Information Restricted registration - show details 3 credits3SM. Maurer, P. Burlando, I. Hajnsek, S. Hellweg, M. Holzner, P. Molnar, E. Morgenroth, R. Stocker, J. Wang
AbstractThe course is organized in the form of seminars held by the students. Topics selected from the core disciplines of the curriculum (water resources, urban water engineering, material fluxes, waste technology, air polution, earth observation) are discussed in the class on the basis of scientific papers that are illustrated and critically reviewed by the students.
ObjectiveLearn about recent research results in environmental engineering and analyse practical applications in environmental engineering.