Markus Kalisch: Katalogdaten im Herbstsemester 2016

NameHerr Dr. Markus Kalisch
Adresse
Seminar für Statistik (SfS)
ETH Zürich, HG G 15.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Auszeichnung: Die Goldene Eule
Telefon+41 44 632 34 35
E-Mailmarkus.kalisch@stat.math.ethz.ch
DepartementMathematik
BeziehungDozent

NummerTitelECTSUmfangDozierende
401-0620-00LStatistischer Beratungsdienst0 KP0.1KM. Kalisch, L. Meier
KurzbeschreibungDer statistische Beratungsdienst steht allen Angehörigen der ETH und in begrenztem Masse auch Aussenstehenden offen.
LernzielBeratung bei der statistischen Auswertung von wissenschaftlichen Daten.
InhaltStudierende und Forschende werden bei der Auswertung wissenschaftlicher Daten individuell beraten, insbesondere auch bei Bachelor-, Master- und Doktorarbeiten. Es ist sehr empfehlenswert, den Beratungsdienst nicht erst kurz vor dem Abschluss einer Arbeit aufzusuchen, sondern bereits bei der Planung einer Studie.
Voraussetzungen / BesonderesDies ist keine Vorlesung sondern ein Beratungsangebot. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.

Anmeldungen richtet man an beratung@stat.math.ethz.ch Tel. 044 632 2223. Siehe auch http://stat.ethz.ch/consulting

Voraussetzungen: Kenntnis der Grundbegriffe der Statistik ist sehr erwünscht.
401-0643-13LStatistik II3 KP2V + 1UM. Kalisch
KurzbeschreibungVertiefung von Statistikmethoden. Nach dem detailierten Fundament aus Statistik I liegt nun der Fokus auf konzeptueller Breite und konkreter Problemlösungsfähigkeit mit der Statistiksoftware R.
LernzielNach diesem Kurs können Sie mit der Statistiksoftware R Daten einlesen, auf vielfältige Art verarbeiten und Grafiken für Berichte oder Vorträge exportieren. Sie verstehen die Konzepte von Methoden wie Lineare Regression (mit Faktoren, Interaktion, Modellwahl), ANOVA (1-weg, 2-weg), Chi-Quadrat-Test, Fisher-Test, GLMs, Mixed Models, Clustering, PCA und können diese mit der Statistiksoftware R in der Praxis umsetzen. Zudem kennen Sie die Grundprinzipien von gutem experimentellem Design und können bestehende Studien kritisch hinterfragen.
401-5640-00LZüKoSt: Seminar on Applied Statistics Information 0 KP1KM. Kalisch, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. H. Maathuis, M. Mächler, L. Meier, N. Meinshausen, M. Robinson, C. Strobl
KurzbeschreibungEtwa 5 Vorträge zur angewandten Statistik.
LernzielKennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Anwendungsgebieten.
InhaltIn etwa 5 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen.
Voraussetzungen / BesonderesDies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.
Nach besonderem Programm:
http://stat.ethz.ch/events/zukost
Lehrsprache ist Englisch oder Deutsch je nach ReferentIn.
406-0603-AALStochastics (Probability and Statistics)
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
4 KP9RM. Kalisch
KurzbeschreibungIntroduction to basic methods and fundamental concepts of statistics and probability theory for non-mathematicians. The concepts are presented on the basis of some descriptive examples. Learning the statistical program R for applying the acquired concepts will be a central theme.
LernzielThe objective of this course is to build a solid fundament in probability and statistics. The student should understand some fundamental concepts and be able to apply these concepts to applications in the real world. Furthermore, the student should have a basic knowledge of the statistical programming language "R".
InhaltFrom "Statistics for research" (online)
Ch 1: The Role of Statistics
Ch 2: Populations, Samples, and Probability Distributions
Ch 3: Binomial Distributions
Ch 6: Sampling Distribution of Averages
Ch 7: Normal Distributions
Ch 8: Student's t Distribution
Ch 9: Distributions of Two Variables

From "Introductory Statistics with R (online)"
Ch 1: Basics
Ch 2: The R Environment
Ch 3: Probability and distributions
Ch 4: Descriptive statistics and tables
Ch 5: One- and two-sample tests
Ch 6: Regression and correlation
Literatur- "Statistics for research" by S. Dowdy et. al. (3rd
edition); Print ISBN: 9780471267355; Online ISBN: 9780471477433; DOI:
10.1002/0471477435
From within the ETH, this book is freely available online under:
http://onlinelibrary.wiley.com/book/10.1002/0471477435

- "Introductory Statistics with R" by Peter Dalgaard; ISBN
978-0-387-79053-4; DOI: 10.1007/978-0-387-79054-1
From within the ETH, this book is freely available online under:
http://www.springerlink.com/content/m17578/
701-0105-00LMathematik VI: Angewandte Statistik für Umweltnaturwissenschaften3 KP2GC. Bigler, U. Brändle, M. Kalisch, L. Meier
KurzbeschreibungStatistische Verfahren aus aktuellen Publikationen der Umweltnaturwissenschaften werden vorgestellt und angewendet. Die Teilnehmenden können Methoden nachvollziehen und beschreiben, Datensätze bereinigen, diese mit dem Softwarepaket R analysieren und Resultate in geeigneter Form darstellen. Sie können Stärken und Schwächen behandelter Verfahren für gegebene Anwendungsgebiete beschreiben.
LernzielDie Studierenden können
- geeignete statistische Methoden für die Datenanalyse in ihrem Fachgebiet nutzen.
- Datensätze mit Hilfe von explorativen Methoden charakterisieren.
- Datensätze auf ihre Tauglichkeit für die Beantwortung einer gegebenen Fragestellung prüfen, für den Import in ein Statistikprogramm aufbereiten und die Analyse durchführen.
- statistische Auswertungen interpretieren und für Präsentationen und Publikationen grafisch aufbereiten.
- Grundlagen von statistischen Methoden in aktuellen Papers beschreiben.
- das Softwarepaket R für statistische Analysen anwenden
InhaltStatistische Methoden: Regression (lineare Modelle; generalisierte lineare Modelle; GLMs); Varianzanalyse; gemischte Modelle für gruppierte Daten (mixed-effects models); Fragebogenstatistik; Tests (t Test; Chiquadrat Test; Fisher Test); Power-Analyse

Werkzeuge: Explorative Datenanalyse für Hypothesenbildung; Auswahlverfahren für geeignete statistische Verfahren; Datenaufbereitung (Excel -> R; Datenbereinigung); graphische Darstellung von Resultaten; statistische Verfahren in Publikationen erkennen
Wir arbeiten mit dem Softwarepaket R.

Form: Im Wochenrhythmus finden alternierend Einführungen in eine neue Methode und Übungsstunden zum Thema statt.
Voraussetzungen / BesonderesBesuch von "Mathematik IV: Statistik" oder vergleichbare Lehrveranstaltung