Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Alexander Caspar: Catalogue data in Autumn Semester 2016

Name Dr. Alexander Caspar
Address
Dep. Mathematik
ETH Zürich, HG E 63.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 68 91
E-mailalexander.caspar@math.ethz.ch
URLhttp://www.math.ethz.ch/~caspara
DepartmentMathematics
RelationshipLecturer

NumberTitleECTSHoursLecturers
401-0293-00LMathematics III3 credits2V + 1UA. Caspar, N. Hungerbühler
AbstractVertiefung der mehrdimensionalen Analysis mit Schwerpunkt in der Anwendung der partiellen Differentialgleichungen, Vertiefung der Linearen Algebra und Einführung in die Systemanalyse und Modellbildung.X
ObjectiveDie Studierenden

+ verstehen Mathematik als Sprache zur Modellbildung und als Werkzeug zur Lösung
angewandter Probleme in den Naturwissenschaften.
+ können anspruchsolle Modelle analysieren, Lösungen qualitativ beschreiben oder
allenfalls explizit berechnen: diskret/kontinuierlich in Zeit, Ebene und Raum.
+ können Beispiele und konkrete arithmetische und geometrische Situationen
der Anwendungen mit Methoden der höheren Mathematik interpretieren und bearbeiten.
Content### Modellbildung ###

- Einführung und Beispiele
- Mehrdimensionale Modelle
- Pocken-Modell
- SIR-Modell

### Lineare Modelle ###

- Vektorräume
- Diagonalisierbarkeit
- Normalformen
- Exponential einer Matrix
- Lösungsraum eines Linearen DGL-Systems

### Fourier-Reihen ###

- Euklidische Vektorräume
- Orthogonale Projektion
- Anwendungen

### Nichtlineare Modelle ###

- Stationäre Lösungen, Qualitative Aussagen
- Mehrdimensionale Modelle: Räuber-Beute, Lotka-Volterra

### Partielle Differentialgleichungen ###

- Einführung, Repetition, Beispiele
- Fourier-Methoden: Wärmeleitung, Laplace, Wellengleichung,
Filter, Computertomographie

### Laplace-Transformation ###

- Definition und Notation
- Rechenregeln
- Anwendungsbeispiel
Lecture notesII (nächstes Semester)
Für Reglement
(Prüfungsblock) Bachelor-Studiengang Maschineningenieurwissenschaften 2010; Ausgabe 15.01.2013 (Prüfungsblock)
LiteratureSiehe Lernmaterial > LiteraturII (nächstes Semester)
Für Reglement
(Prüfungsblock) Bachelor-Studiengang Maschineningenieurwissenschaften 2010; Ausgabe 15.01.2013 (Prüfungsblock)
Prerequisites / NoticeVorlesungen Mathematik I/II
401-0293-99LMathematics III (Supplement)
Simultaneous enrolment in "Mathematics III" (401-0293-00L) is compulsory.
1 credit1AA. Caspar, N. Hungerbühler
AbstractModellbildung, Vertiefung der mehrdimensionalen Analysis mit Schwerpunkt in der Anwendung der partiellen Differentialgleichungen, Vertiefung der Linearen Algebra und der Theorie der gewöhnlichen Differentialgleichungen, Einführung in die Systemanalyse. Die Studierenden erarbeiten zudem eine Unterrichtssequenz.
ObjectiveDie Studierenden kennen die wesentlichen Elemente der mathematischen Modellierung. Sie sind in der Lage, Modelle zu erstellen und mathematisch zu diskutieren. Sie können selbständig Unterrichtssequenzen zur Modellierung entwickeln.
Content- Modellbildung
- Lineare Modelle:
Vektorräume,
Normalformen,
Lösungsraum eines Linearen DGL-Systems
- Qualitative Aussagen, Nichtlineare Modelle:
Stabilität für eine DGL 1.Ordnung, für allgemeine DGL-Systeme
- Modelle in Raum und Zeit:
Partielle DGL,
Fourier-Reihe, -Transformation,
Laplace-Operator
LiteratureImboden, D. and S. Koch, Systemanalyse - Einführung in die mathematische Modellierung natürlicher Systeme. Berlin Heidelberg: Springer Verlag (2008).
Prerequisites / NoticeGrundvorlesungen zur Analysis