Vanessa Wood: Catalogue data in Spring Semester 2016

Award: The Golden Owl
Name Prof. Dr. Vanessa Wood
FieldMaterials and Device Engineering
Address
Institut für Elektronik
ETH Zürich, ETZ H 96
Gloriastrasse 35
8092 Zürich
SWITZERLAND
Telephone+41 44 632 66 54
E-mailvwood@ethz.ch
DepartmentInformation Technology and Electrical Engineering
RelationshipFull Professor and Vice President of Knowledge Transfer and Corporate Relations

NumberTitleECTSHoursLecturers
227-0662-00LOrganic and Nanostructured Optics and Electronics Information
Does not take place this semester.
6 credits4GV. Wood
AbstractThis course examines the optical and electronic properties of excitonic materials that can be leveraged to create thin-film light emitting devices and solar cells. Laboratory sessions provide students with experience in synthesis and optical characterization of nanomaterials as well as fabrication and characterization of thin film devices.
ObjectiveGain the knowledge and practical experience to begin research with organic or nanostructured materials and understand the key challenges in this rapidly emerging field.
Content0-Dimensional Excitonic Materials (organic molecules and colloidal quantum dots)

Energy Levels and Excited States (singlet and triplet states, optical absorption and luminescence).

Excitonic and Polaronic Processes (charge transport, Dexter and Förster energy transfer, and exciton diffusion).

Devices (photodetectors, solar cells, and light emitting devices).
LiteratureLecture notes and reading assignments from current literature to be posted on website.
Prerequisites / NoticeCourse grade will be based on a final project.
227-0664-00LTechnology and Policy of Electrical Energy Storage4 credits2GV. Wood, T. Schmidt
AbstractWith the global emphasis on decreasing CO2 emissions, achieving fossil fuel independence and growing the use of renewables, developing & implementing energy storage solutions for electric mobility & grid stabilization represent a key technology & policy challenge. This course primarily uses lithium ion batteries as a case study to understand the interplay between technology, economics & policy.
ObjectiveThe students will learn of the complexity involved in battery research, design, production, as well as in investment, economics and policy making around batteries. Students from technical disciplines will gain insights into policy, while students from social science backgrounds will gain insights into technology.
ContentWith the global emphasis on decreasing CO2 emissions, achieving fossil fuel independence, and integrating renewables on the electric grid, developing and implementing energy storage solutions for electric mobility and grid stabilization represent a key technology and policy challenge. The class will focus on lithium ion batteries since they are poised to enter a variety of markets where policy decisions will affect their production, adoption, and usage scenarios. The course considers the interplay between technology, economics, and policy.

* intro to energy storage for electric mobility and grid-stabilization
* basics of battery operation, manufacturing, and integration
* hands-on fabrication and testing of a cell
* intro to the role of policy for energy storage innovation & diffusion
* discussion of complexities involved in policy and politics of energy storage
Lecture notesMaterials will be made available on the website.
LiteratureMaterials will be made available on the website.
Prerequisites / NoticeStrong interest in energy and technology policy.
860-0014-00LPaper Project on Technology and Policy of Electric Energy Storage Restricted registration - show details
Requirement: Only students who have visited the course 227-0664-00L and passed the test at the end of the semester, may sign up for this course.
2 credits1AT. Schmidt, V. Wood
AbstractPaper project on a topic related to main lecture Technology and Policy of Electric Energy Storage. Can only be taken when enrolled in the main lecture.
ObjectiveThe students will choose either a technology or a policy and elaborate on various aspects. The technology questions will include policy aspects; the policy questions will be closely related technological diffusion and innovation.
Lecture notesMaterials will be made available through polybox.
LiteratureMaterials will be made available through polybox.
Prerequisites / NoticeSuccessful completion of Technology and Policy of Electric Energy Storage lecture (227-0664-00L).