Thomas Schmidt: Katalogdaten im Frühjahrssemester 2021

NameHerr Prof. Dr. Thomas Schmidt
Lab. für Physikalische Chemie
ETH Zürich, HCI G 215
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
Telefon+41 44 632 22 64
DepartementChemie und Angewandte Biowissenschaften
BeziehungOrdentlicher Professor

529-0135-00LCook and Look: Watching Functional Materials in Situ3 KP3GM. Nachtegaal, D. Ferri, O. Safonova, T. Schmidt
KurzbeschreibungHands-on course on in situ spectroscopies (x-ray, infrared, Raman) and x-ray diffraction for understanding the structure of functional materials.
LernzielThorough understanding of available state-of-the-art spectroscopies for the characterization of the structure of functional materials under in situ conditions.
Problem solving strategies and reporting in a scientific format.
To learn the basics of spectroscopic data analysis.
InhaltThis course will introduce state-of-the art synchrotron techniques (x-ray absorption and emission spectroscopies, x-ray diffraction) as well as complementary infrared and Raman spectroscopies for the characterization of functional materials, such as catalysts, under operating (in situ) conditions. On the ‘cook’ days, each technique will be introduced by a lecture, after which samples will be ‘cooked’ (sample preparation, building in situ setup, and measurement). This will be followed by a ‘look’ day where the collected data will be analyzed. Principles of x-ray data treatment, including Fourier transformation, will be introduced.
SkriptA course manual with in depth background information will be distributed before the course.
LiteraturWill be suggested in the course manual and made available during the course.
Voraussetzungen / BesonderesThe course will take place at the Swiss Light Source, at the Paul Scherrer Institut. Students will be housed for several nights in the guest house. You are required to contact the organizers upon registration since beamtime and housing has to be reserved well in advance.
529-0440-00LPhysical Electrochemistry and Electrocatalysis6 KP3GT. Schmidt
KurzbeschreibungFundamentals of electrochemistry, electrochemical electron transfer, electrochemical processes, electrochemical kinetics, electrocatalysis, surface electrochemistry, electrochemical energy conversion processes and introduction into the technologies (e.g., fuel cell, electrolysis), electrochemical methods (e.g., voltammetry, impedance spectroscopy), mass transport.
LernzielProviding an overview and in-depth understanding of Fundamentals of electrochemistry, electrochemical electron transfer, electrochemical processes, electrochemical kinetics, electrocatalysis, surface electrochemistry, electrochemical energy conversion processes (fuel cell, electrolysis), electrochemical methods and mass transport during electrochemical reactions. The students will learn about the importance of electrochemical kinetics and its relation to industrial electrochemical processes and in the energy seactor.
InhaltReview of electrochemical thermodynamics, description electrochemical kinetics, Butler-Volmer equation, Tafel kinetics, simple electrochemical reactions, electron transfer, Marcus Theory, fundamentals of electrocatalysis, elementary reaction processes, rate-determining steps in electrochemical reactions, practical examples and applications specifically for electrochemical energy conversion processes, introduction to electrochemical methods, mass transport in electrochemical systems. Introduction to fuel cells and electrolysis
SkriptWill be handed out during the Semester
LiteraturPhysical Electrochemistry, E. Gileadi, Wiley VCH
Electrochemical Methods, A. Bard/L. Faulkner, Wiley-VCH
Modern Electrochemistry 2A - Fundamentals of Electrodics, J. Bockris, A. Reddy, M. Gamboa-Aldeco, Kluwer Academic/Plenum Publishers
529-0499-00LPhysical Chemistry1 KP1KB. H. Meier, A. Barnes, M. Ernst, P. H. Hünenberger, G. Jeschke, F. Merkt, M. Reiher, J. Richardson, R. Riek, S. Riniker, T. Schmidt, R. Signorell, H. J. Wörner
KurzbeschreibungSeminar series covering current developments in Physical Chemistry
LernzielDiscussing current developments in Physical Chemistry