Andrew de Mello: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Andrew de Mello
FieldBiochemical Engineering
Address
Inst. f. Chemie- u. Bioing.wiss.
ETH Zürich, HCI F 115
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telephone+41 44 633 66 10
E-mailandrew.demello@chem.ethz.ch
URLhttps://www.demellogroup.ethz.ch
DepartmentChemistry and Applied Biosciences
RelationshipFull Professor

NumberTitleECTSHoursLecturers
529-0010-00LChemistry3 credits2V + 1UC. Mondelli, A. de Mello
AbstractThis is a general chemistry course aimed at first year undergraduate students in the Department of Mechanical and Process Engineering (D-MAVT).
ObjectiveThe aims of the course are as follows:
1) To provide a thorough understanding of the basic principles of chemistry and its application.
2) To develop an understanding of the atomic and molecular nature of matter and of the chemical reactions that describe their transformations.
3) To emphasize areas considered most relevant in an engineering context.
ContentElectronic structure of atoms, chemical bonding, molecular shape and bonding theory, gases, thermodynamics, chemical thermodynamics, chemical kinetics, equilibria, solutions and intermolecular forces, redox and electrochemistry.
LiteratureThe course is based on "Chemistry the Central Science" by Brown, LeMay, Bursten, Murphy and Woodward. Pearson, 12th Edition (international edition).
529-0690-00LICB Seminars on Chemical and Biochemical Engineering Information 1 creditA. de Mello
AbstractThe ICB seminar series covers the umbrella of diverse research activities encompassed within the institute, including catalysis, functional materials, polymer engineering, separations, microfluidics, process design, and systems engineering. This series was founded with the aim or promoting cross-disciplinary scientific discourse and interaction with other distinguished groups working worldwide.
ObjectiveStudents are expected to attend all seminars in one academic year, and should register at the beginning of each seminar. Additionally they must deliver a two page written report at the end of the year describing the topics covered, main conclusions, and interrelationships between the different themes.
ContentThe ICB seminar series covers the umbrella of diverse research activities encompassed within the institute, including catalysis, functional materials, polymer engineering, separations, microfluidics, process design, and systems engineering. This series was founded with the aim or promoting cross-disciplinary scientific discourse and interaction with other distinguished groups working worldwide, and is targeted at individuals who have made outstanding contributions within their fields. Each year, around 7 distinguished scientists and technologists will be invited to speak on topics of current interest in Chemical and Biochemical Engineering. PhD students are particularly encouraged to attend in order to broaden their perception and enrich their scientific horizons.
529-0837-00LBiomicrofluidic Engineering Restricted registration - show details
Number of participants limited to 30.
7 credits3GA. de Mello
AbstractMicrofluidics describes the behaviour, control and manipulation of fluids that are geometrically constrained within sub-microliter environments. The use of microfluidic devices offers an opportunity to control physical and chemical processes with unrivalled precision, and in turn provides a route to performing chemistry and biology in an ultra-fast and high-efficiency manner.
ObjectiveIn the course students will investigate the theoretical concepts behind microfluidic device operation, the methods of microfluidic device manufacture and the application of microfluidic architectures to important problems faced in modern day chemical and biological analysis. A design workshop will allow students to develop new microscale flow processes by appreciating the dominant physics at the microscale. The application of these basic ideas will primarily focus on biological problems and will include a treatment of diagnostic devices for use at the point-of-care, advanced functional material synthesis, DNA analysis, proteomics and cell-based assays. Lectures, assignments and the design workshop will acquaint students with the state-of-the-art in applied microfluidics.
ContentSpecific topics in the course include, but not limited to:

1. Theoretical Concepts
Features of mass and thermal transport on the microscale
Key scaling laws
2. Microfluidic Device Manufacture
Conventional lithographic processing of rigid materials
Soft lithographic processing of plastics and polymers
Mass fabrication of polymeric devices
3. Unit operations and functional components
Analytical separations (electrophoresis and chromatography)
Chemical and biological synthesis
Sample pre-treatment (filtration, SPE, pre-concentration)
Molecular detection
4. Design Workshop
Design of microfluidic architectures for PCR, distillation & mixing
5. Contemporary Applications in Biological Analysis
Microarrays
Cellular analyses (single cells, enzymatic assays, cell sorting)
Proteomics
6. System integration
Applications in radiochemistry, diagnostics and high-throughput experimentation
Lecture notesLecture handouts, background literature, problem sheets and notes will be provided electronically.