Jonathan Levine: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Jonathan Levine
FieldPlant Ecology
Institut für Integrative Biologie
ETH Zürich, CHN H 12.1
Universitätstrasse 16
8092 Zürich
DepartmentEnvironmental Systems Science
RelationshipAssociate Examiner

701-0243-AALBiology III: Essentials of Ecology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RJ. Levine
AbstractThis course assigns reading for students needing further background for understanding ecological processes. Central problems in ecology, including population growth and regulation, the dynamics of species interactions, the influence of spatial structure, the controls over species invasions, and community responses to environmental change will be explored from basic and applied perspectives.
ObjectiveOriginal language Students will understand how ecological processes operate in natural communities. They will appreciate how mathematical theory, field experimentation, and observational studies combine to generate a predictive science of ecological processes.

Upon completing the course, students will be able to:

Understand the factors determining the outcome of species interactions in communities, and how this information informs management.

Apply theoretical knowledge on species interactions to predict the potential outcomes of novel species introductions.

Understanding the role of spatial structure in mediating population dynamics and persistence, species interactions, and patterns of species diversity.

Use population and community models to predict the stability of interactions between predators and prey and between different competitors.

Understand the conceptual basis of predictions concerning how ecological communities will respond to climate change.
ContentReadings from a text book will focus on understanding central processes in community ecology. Topics will include demographic and spatial structure, consumer resource interactions, food webs, competition, invasion, and the maintenance of species diversity. Each of these more conceptual topics will be discussed in concert with their applications to the conservation and management of species and communities in a changing world.
701-0323-00LPlant Ecology3 credits2VS. Güsewell, J. Levine
AbstractThis class focuses on ecological processes involved with plant life, mechanisms of plant adaptation, plant-animal and plant-soil interactions, plant strategies and implications for the structure and function of plant communities. The discussion of original research examples familiarises students with research questions and methods; they learn to evaluate results and interpretations.
ObjectiveStudents will be able to:
- propose methods to study ecological processes involved with plant life, and how these processes depend on internal and external factors;
- analyse benefits and costs of plant adaptations;
- explain plant strategies with relevant traits and trade-offs;
- explain and predict the assembly of plant communities;
- explain implications of plant strategies for animals, microbes and ecosystem functions;
- evaluate studies in plant ecology regarding research questions, assumptions, methods, as well as the reliability and relevance of results.
ContentPlants represent the matrix of natural communities. The structure and dynamics of plant populations drives the function of ecosystems. This course presents essential processes and plant traits involved with plant life. We focus on research questions that have been of special interest to plant ecologists as well as current topical questions. We use original research examples to discuss how ecological questions are studied and how results are interpreted.
- Growth: what determines the production of a plant?
- Nutrients: consumption or recycling: opposite strategies and feedbacks on soils;
- Clonality: collaboration and division of labour in plants;
- Plasticity: benefits and costs of plant intelligence;
- Flowering and pollination: how expensive is sex?
- Seed types, dispersal, seed banks and germination: strategies and trade-offs in the persistence of plant populations;
- Development and structure of plant populations;
- Stress, disturbance and competition as drivers of different plant strategies;
- Herbivory: plant-animal feedbacks and functioning of grazing ecosystems
- Fire: impacts on plants, vegetation and ecosystems.
- Plant functional types and rules in the assembly of plant communities.
Lecture notesHandouts and further reading will be available electronically at the beginning of the semester.
Prerequisites / NoticePrerequisites
- General knowledge of plant biology
- Basic knowledge of plant sytematics
- General ecological concepts
701-1460-00LEcology and Evolution: Term Paper Restricted registration - show details 5 credits11AT. Städler, S. Bonhoeffer, A. Hall, J. Jokela, J. Levine, G. Velicer, A. Widmer
AbstractIndividual writing of an essay-type review paper about a specialized topic in the field of ecology and evolution, based on substantial reading of original literature and discussions with a senior scientist.
Objective- Students acquire a thorough knowledge on a topic in which they are particularly interested
- They learn to assess the relevance of original literature and synthesize information
- They make the experience of becoming "experts" on a topic and develop their own perspective
- They practise academic writing according to professional standards in English
ContentTopics for the essays are proposed by the professors and lecturers of the major in Ecology and Evolution at a joint meeting at the beginning of the semester (the date will be communicated by e-mail to registered students).
Students will:
- choose a topic
- search and read appropriate literature
- develop a personal view on the topic and structure their arguments
- prepare figures and tables to represent ideas or illustrate them with examples
- write a clear, logical and well-structured text
- refine the text and present the paper according to professional standards

In all steps, they will benefit from the advice and detailed feedback given by a senior scientist acting as personal tutor of the student.
Lecture notesReading of articles in scientific journals