From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

Niklas Beisert: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Niklas Beisert
FieldMathematical Physics
Address
Institut für Theoretische Physik
ETH Zürich, HIT K 31.8
Wolfgang-Pauli-Str. 27
8093 Zürich
SWITZERLAND
Telephone+41 44 633 78 29
E-mailnbeisert@itp.phys.ethz.ch
URLhttp://people.phys.ethz.ch/~nbeisert
DepartmentPhysics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
402-0101-00LThe Zurich Physics Colloquium Information 0 credits1KR. Renner, G. Aeppli, C. Anastasiou, N. Beisert, G. Blatter, S. Cantalupo, M. Carollo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, T. K. Gehrmann, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, K. Schawinski, T. C. Schulthess, M. Sigrist, M. Troyer, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg
AbstractResearch colloquium
Objective
Prerequisites / NoticeOccasionally, talks may be delivered in German.
402-0800-00LThe Zurich Theoretical Physics Colloquium Information 0 credits1KS. Huber, C. Anastasiou, N. Beisert, G. Blatter, M. Gaberdiel, T. K. Gehrmann, G. M. Graf, P. Jetzer, L. M. Mayer, B. Moore, R. Renner, T. C. Schulthess, M. Sigrist, M. Troyer, O. Zilberberg, University lecturers
AbstractResearch colloquium
ObjectiveThe Zurich Theoretical Physics Colloquium is jointly organized by the University of Zurich and ETH Zurich. Its mission is to bring both students and faculty with diverse interests in theoretical physics together. Leading experts explain the basic questions in their field of research and communicate the fascination for their work.
402-0822-13LIntroduction to Integrability6 credits2V + 1UN. Beisert
AbstractThis course gives an introduction to the theory of integrable systems, related symmetry algebras and efficients calculational methods.
ObjectiveIntegrable systems are a special class of physical models that can be solved exactly due to an exceptionally large number of symmetries. Examples of integrable models appear in many different areas of physics, including classical mechanics, condensed matter, 2d quantum field theories and lately in string- and gauge theories. They offer a unique opportunity to gain a deeper understanding of generic phenomena in a simplified, exactly solvable setting. In this course we introduce the various notions of integrability in classical mechanics, quantum mechanics and quantum field theory. We discuss efficient methods for solving such models as well as the underlying enhanced symmetries.
Content* Classical Integrability
* Integrable Field Theory
* Integrable Spin Chains
* Quantum Integrability
* Integrable Statistical Mechanics
* Quantum Algebra
* Bethe Ansatz and Related Methods
* AdS/CFT Integrability
Literature* V. Chari, A. Pressley, "A Guide to Quantum Groups", Cambridge University Press (1995).
* O. Babelon, D. Bernard, M. Talon, "Introduction to Classical Integrable Systems", Cambridge University Press (2003)
* N. Reshetikhin, "Lectures on the integrability of the 6-vertex model", http://arxiv.org/abs/1010.5031
* L.D. Faddeev, "How Algebraic Bethe Ansatz Works for Integrable Model", http://arxiv.org/abs/hep-th/9605187
* D. Bernard, "An Introduction to Yangian Symmetries", Int. J. Mod. Phys. B7, 3517-3530 (1993), http://arxiv.org/abs/hep-th/9211133
* V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, "Quantum Inverse Scattering Method and Correlation Functions", Cambridge University Press (1997)
406-0204-AALElectrodynamics
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
7 credits15RN. Beisert
AbstractDerivation and discussion of Maxwell's equations, from the static limit to the full dynamical case. Wave equation, waveguides, cavities. Generation of electromagnetic radiation, scattering and diffraction of light. Structure of Maxwell's equations, relativity theory and covariance, Lagrangian formulation. Dynamics of relativistic particles in the presence of fields and radiation properties.
ObjectiveDevelop a physical understanding for static and dynamic phenomena related to (moving) charged objects and understand the structure of the classical field theory of electrodynamics (transverse versus longitudinal physics, invariances (Lorentz-, gauge-)). Appreciate the interrelation between electric, magnetic, and optical phenomena and the influence of media. Understand a set of classic electrodynamical phenomena and develop the ability to solve simple problems independently. Apply previously learned mathematical concepts (vector analysis, complete systems of functions, Green's functions, co- and contravariant coordinates, etc.). Prepare for quantum mechanics (eigenvalue problems, wave guides and cavities).
ContentClassical field theory of electrodynamics: Derivation and discussion of Maxwell equations, starting from the static limit (electrostatics, magnetostatics, boundary value problems) in the vacuum and in media and subsequent generalization to the full dynamical case (Faraday's law, Ampere/Maxwell law; potentials and gauge invariance). Wave equation and solutions in full space, half-space (Snell's law), waveguides, cavities, generation of electromagnetic radiation, scattering and diffraction of light (optics). Application to various specific examples. Discussion of the structure of Maxwell's equations, Lorentz invariance, relativity theory and covariance, Lagrangian formulation. Dynamics
of relativistic particles in the presence of fields and their radiation properties (synchrotron).
LiteratureJ.D. Jackson, Classical Electrodynamics
W.K.H Panovsky and M. Phillis, Classical electricity and magnetism
L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii, Electrodynamics of continuus media
A. Sommerfeld, Elektrodynamik, Optik (Vorlesungen über theoretische Physik)
M. Born and E. Wolf, Principles of optics
R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures of Physics, Vol II