Lenny Winkel: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Lenny Winkel
FieldEnvironmental Inorganic Geochemistry
Address
I. f. Biogeochemie/Schadstoffdyn.
ETH Zürich, CHN E 21.2
Universitätstrasse 16
8092 Zürich
SWITZERLAND
Award: The Golden Owl
Telephone+41 44 632 87 12
E-maillwinkel@ethz.ch
DepartmentEnvironmental Systems Science
RelationshipAssociate Professor

NumberTitleECTSHoursLecturers
701-0423-00LChemistry of Aquatic Systems3 credits2GL. Winkel
AbstractThis course gives an introduction to chemical processes in aquatic systems and shows applications to various systems. The following topics are treated: acid-base reactions and carbonate system, solubility of solids and weathering, redox reactions, complexation of metals, reactions at the solid/water interface, applications to lakes, rivers and groundwater.
ObjectiveUnderstanding of chemical processes in aquatic systems. Quantitative application of chemical equilibria to processes in natural waters. Evaluation of analytical data from aquatic systems.
ContentIntroduction to the chemistry of aquatic systems. Regulation of the composition of natural waters by chemical, geochemical and biological processes. Quantitative application of chemical equilibria to processes in natural waters. The following topics are treated: acid-base reactions, carbonate system; solubility of solid phases and weathering; complexation of metals and metal cycling in natural waters; redox reactions; reactions at the interface solid phase-water; applications to lakes, rivers, groundwater.
Lecture notesScript is distributed.
LiteratureSigg, L., Stumm, W., Aquatische Chemie, 5. Aufl., vdf/UTB, Zürich, 2011.
701-1302-00LTerm Paper 2: Seminar
Prerequisite: Term Paper 1: Writing (701-1303-00L).
2 credits1SM. H. Schroth, N. Gruber, J. Hering, R. Kretzschmar, M.  Lever, K. McNeill, D. Or, B. Wehrli, L. Winkel
AbstractThis class is the 2nd part of a series and participation is conditional on the successful completion of the Term paper Writing class (701-1303-00L). The results from the term paper written during the winter term are presented to the other students and advisors and discussed.
ObjectiveThe goal of the term paper Seminars is to train the student's ability to communicate the results to a wider audience and the ability to respond to questions and comments.
ContentEach student presents the results of the term paper to the other students and advisors and responds to questions and comments from the audience.
Lecture notesNone
LiteratureTerm paper
Prerequisites / NoticeThe term papers will be made publically available after each student had the opportunity to make revisions.

There is no final exam. Grade is assigned based on the quality of the presentation and ensuing discussion.
701-1303-00LTerm Paper 1: Writing Restricted registration - show details 5 credits6AM. H. Schroth, N. Gruber, J. Hering, R. Kretzschmar, M.  Lever, K. McNeill, D. Or, B. Wehrli, L. Winkel
AbstractThe ability to critically evaluate original (scientific) literature and to summarize the information in a succinct manner is an important skill for any student. This course aims to practise this ability, requiring each student to write a term paper on a topic of relevance for research in the areas of Biogeochemistry and Pollutant Dynamics.
ObjectiveThe goal of the term paper is to train the student's ability to
critically evaluate a well-defined set of research subjects, and to
summarize the findings concisely in a paper of scientific quality. The
paper will be evaluated based on its ability to communicate an
understanding of a topic, and to identify key outstanding questions.
Results from this term paper will be presented to the fellow students and
involved faculty in the following term (Term paper seminars class)
ContentEach student is expected to write a paper with a length of approximately 15 pages. The students can choose from a list of topics prepared by the supervisors, but the final topic will be determined based on a balance of choice and availability. The students will be guided and advised by their advisors throughout the term. The paper itself should contain the following elements: Motivation and context of the given topic (25%), Concise presentation of the state of the science (50%), Identification of open questions and perhaps outline of opportunities for research (25).
In addition, the accurate use of citations, attribution of ideas, and the judicious use of figures, tables, equations and references are critical components of a successful paper. Specialized knowledge is not expected, nor required, neither is new research.
Lecture notesGuidelines and supplementary material will be handed out at the beginning of the class.
LiteratureWill be identified based on the chosen topic.
Prerequisites / NoticeEach term paper will be reviewed by one fellow student and one faculty. The submission of a written review is a prerequisite for obtaining the credit points.
There is no final exam. Grade is assigned based on the quality of the term paper and the submission of another student's review.

Students are expected to take Term Paper Writing and Term Paper Seminar classes in sequence.
701-1315-00LBiogeochemistry of Trace Elements3 credits2GA. Voegelin, M. Etique, L. Winkel
AbstractThe course addresses the biogeochemical classification and behavior of trace elements, including key processes driving the cycling of important trace elements in aquatic and terrestrial environments and the coupling of abiotic and biotic transformation processes of trace elements. Examples of the role of trace elements in natural or engineered systems will be presented and discussed in the course.
ObjectiveThe students are familiar with the chemical characteristics, the environmental behavior and fate, and the biogeochemical reactivity of different groups of trace elements. They are able to apply their knowledge on the interaction of trace elements with geosphere components and on abiotic and biotic transformation processes of trace elements to discuss and evaluate the behavior and impact of trace elements in aquatic and terrestrial systems.
Content(i) Definition, importance and biogeochemical classification of trace elements. (ii) Key biogeochemical processes controlling the cycling of different trace elements (base metals, redox-sensitive and chalcophile elements, volatile trace elements) in natural and engineered environments. (iii) Abiotic and biotic processes that determine the environmental fate and impact of selected trace elements.
Lecture notesSelected handouts (lecture notes, literature, exercises) will be distributed during the course.
Prerequisites / NoticeStudents are expected to be familiar with the basic concepts of aquatic and soil chemistry covered in the respective classes at the bachelor level (soil mineralogy, soil organic matter, acid-base and redox reactions, complexation and sorption reactions, precipitation/dissolution reactions, thermodynamics, kinetics, carbonate buffer system).
This lecture is a prerequisite for attending the laboratory course "Trace elements laboratory".