Helma Wennemers: Catalogue data in Autumn Semester 2022

Award: The Golden Owl
Name Prof. Dr. Helma Wennemers
FieldOrganic Chemistry
Address
Lab. für Organische Chemie
ETH Zürich, HCI H 313
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telephone+41 44 633 37 77
E-mailhelma.wennemers@org.chem.ethz.ch
DepartmentChemistry and Applied Biosciences
RelationshipFull Professor

NumberTitleECTSHoursLecturers
529-0221-00LOrganic Chemistry I3 credits2V + 1UH. Wennemers
AbstractThis course will build upon the basic knowledge of structure and reactivity of organic molecules gained in AC/OCI and AC/OCII. The module aims to provide a wide understanding of the occurrence, synthesis, properties, and reactivity of carbonyl compounds.
ObjectiveThe goal of this course is the acquisition of a basic repertoire of synthetic methods including important reactions of aldehydes, ketones, carboxylic acids, and carboxylic acid derivatives. Particular emphasis is placed on the understanding of reaction mechanisms and the correlation between structure and reactivity. A deeper understanding of the concepts presented during the lecture is reached by solving the problems handed out each time and discussed one week later in the exercise class.
ContentStructure and properties of carbonyl compounds. Chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds). Synthesis and reactivity of carboxylic acid derivatives (nucleophilic addition-elimination reactions). Oxidations and reductions. Reactivity at the alpha-carbon (keto/enol tautomerization, alpha-functionalization, aldol reactions, conjugate addition reactions). Introduction to the concepts of protecting groups and retrosynthesis.
Lecture notesThe lecture slides, problem sets, and additional documents are provided online. Link: https://wennemers.ethz.ch/education.html
LiteratureClayden, Greeves, and Warren. Organic Chemistry, 2nd Edition. Oxford University Press, 2012. Additional literature will be provided at the beginning of the class and in the lecture notes.
529-0240-00LChemical Biology - Peptides6 credits3GH. Wennemers
AbstractAn advanced course on the synthesis, properties and function of peptides in chemistry and biology.
ObjectiveKnowledge of the synthesis, properties and function of peptides in chemistry and biology.
ContentAdvanced peptide synthesis, conformational properties, combinatorial chemistry, therapeutic peptides, peptide based materials, peptides in nanotechnology, peptides in asymmetric catalysis.
Lecture notesCitations from the original literature relevant to the individual lectures will be assigned weekly.
LiteratureNorbert Sewald, Hans Dieter Jakubke "Peptides: Chemistry and Biology", 1st edition, Wiley VCH, 2002.
529-0290-00LOrganic Chemistry (Seminar) Restricted registration - show details 0 credits2SE. M. Carreira, J. W. Bode, H. Wennemers, R. Zenobi
Abstract
Objective
529-0299-00LOrganic Chemistry0 credits1.5KJ. W. Bode, E. M. Carreira, P. Chen, H. Wennemers, R. Zenobi
Abstract
Objective
529-0731-00LNucleic Acids and Carbohydrates
Note for BSc Biology students: Only one of the two concept courses 529-0731-00 Nucleic Acids and Carbohydrates (autumn semester) or 529-0732-00 Proteins and Lipids (spring semester) can be counted for the Bachelor's degree.
6 credits3GK. Lang, P. A. Kast, S. J. Sturla, H. Wennemers
AbstractStructure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines
ObjectiveStructure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines
ContentStructure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines
Lecture notesNo script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server).
LiteratureMainly based on original literature, a detailed list will be distributed during the lecture
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Personal CompetenciesSelf-awareness and Self-reflection assessed
Self-direction and Self-management assessed
551-0357-00LCellular Matters: From Milestones to Open Questions
The number of participants is limited to 22 and will only take place with a minimum of 11 participants.
Please sign up until two weeks before the beginning of the semester (for Autumn 2022: by 05.09.2022 end of day) via e-mail to Link using in the subject: 551-0357-00. In the email body indicate 1) your name, 2) your e-mail address, 3) master/PhD program. The students admitted to this seminar will be informed by e-mail in the week prior to the beginning of the semester.

The first lecture will serve to form groups of students and assign papers.
4 credits2SY. Barral, F. Allain, P. Arosio, E. Dufresne, D. Hilvert, M. Jagannathan, R. Mezzenga, T. Michaels, G. Neurohr, R. Riek, A. E. Smith, K. Weis, H. Wennemers
AbstractIn this course, the students will explore the quite new topic of biomolecular condensates.
Concepts and tools from biology, chemistry, biophysics and soft materials will be used, on one hand, to develop an understanding of the biological properties and functions of biomolecular condensates in health and disease, while, on the other, to inspire new materials.
ObjectiveIn terms of content, you, the student, after a general introduction to the topic, will learn about milestone works and current research questions in the young field of biomolecular condensates (properties, functions and applications) from an interdisciplinary point of view in a course which is a combination of literature (presentations given by pairs of students with different scientific backgrounds) and research seminars (presentations given by the lecturers all active experts in the field, with different backgrounds and expertise).
As to the skills, you will have the opportunity to learn how to critically read and evaluate scientific literature, how to give scientific presentations to an interdisciplinary audience (each presentation consisting of an introduction, critical description of the results and discussion of their significance) and substantiate your statements, acquire a critical mindset (pros/cons of chosen approaches/methods and limitations, quality of the data, solidity of the conclusions, possible follow-up experiments) that allows you to ask relevant questions and actively participate to the discussion.
With the final presentation you will have the unique opportunity to interact closely with the interdisciplinary group of lecturers (all internationally well-established experts) who will guide you in the choice of a subtopic and related literature.
ContentIn the last decade a new kind of compartments within the cell, the so-called biomolecular condensates, have been observed. This discovery is radically changing our understanding of the cell, its organization and dynamics. The emerging picture is that the cytoplasm and nucleoplasm are highly complex fluids that can (meta)stably segregate into membrane-less sub-compartments, similarly to emulsions.

The topic of biomolecular condensates goes beyond the boundaries of traditional disciplines and needs a multi-pronged approach that levers on, and cross-fertilizes, biology, physical chemistry, biophysics and soft materials to develop a proper understanding of the properties, functions in health and disease (Alzheimer’s, Parkinson’s, etc.), as well as possible applications of these biomolecular condensates.

Each week the lecture will consist of:
1) a short literature seminar: Pairs of students from different scientific backgrounds will be formed and assigned beforehand to present milestone literature to the class and facilitate the ensuing discussion. In the first class the pairs will be formed, the milestone papers made known to the whole class and assigned to the pairs.
2) a research seminar: the presentation of the milestone literature will serve as the introduction to the lecture by one of the lecturers of the course on their own state-of-the-art research in the field.
Lecture notesThe presentations will be made available after the lectures.
LiteratureThe milestone papers will be provided in advance.
For the final examination, the students will be helped by the lecturers in identifying a research topic and related literature.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingfostered
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityassessed
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered