Kirill Povarov: Catalogue data in Spring Semester 2018

Name Dr. Kirill Povarov
Address
Professur f. Neutronenstreuung
ETH Zürich, HPF F 22
Otto-Stern-Weg 1
8093 Zürich
SWITZERLAND
Telephone+41 44 633 91 35
E-mailpovarovk@ethz.ch
DepartmentPhysics
RelationshipLecturer

NumberTitleECTSHoursLecturers
402-0532-00LQuantum Solid State Magnetism6 credits2V + 1UA. Zheludev, K. Povarov
AbstractThis course is based on the principal modern tools used to study collective magnetic phenomena in the Solid State, namely correlation and response functions. It is quite quantitative, but doesn't contain any "fancy" mathematics. Instead, the theoretical aspects are balanced by numerous experimental examples and case studies. It is aimed at theorists and experimentalists alike.
ObjectiveLearn the modern theoretical foundations and "language", as well as principles and capabilities of the latest experimental techniques, used to describe and study collective magnetic phenomena in the Solid State.
Content- Magnetic response and correlation functions. Analytic properties. Fluctuation-dissipation theorem. Experimental methods to measure static and dynamic correlations.

- Magnetic response and correlations in metals. Diamagnetism and paramagnetism. Magnetic ground states: ferromagnetism, spin density waves. Excitations in metals, spin waves. Experimental examples.

- Magnetic response and correlations of magnetic ions in crystals: quantum numbers and effective Hamiltonians. Application of group theory to classifying ionic states. Experimental case studies.

- Magnetic response and correlations in magnetic insulators. Effective Hamiltonians. Magnetic order and propagation vector formalism. The use of group theory to classify magnetic structures. Determination of magnetic structures from diffraction data. Excitations: spin wave theory and beyond. "Triplons". Measuring spin wave spectra.
Lecture notesA comprehensive textbook-like script is provided.
LiteratureIn principle, the script is suffient as study material. Additional reading:

-"Magnetism in Condensed Matter" by S. Blundell
-"Quantum Theory of Magnetism: Magnetic properties of Materials" by R. M. White
-"Lecture notes on Electron Correlations and Magnetism" by P. Fazekas
Prerequisites / NoticePrerequisite:
402-0861-00L Statistical Physics
402-0501-00L Solid State Physics

Not prerequisite, but a good companion course:
402-0871-00L Solid State Theory
402-0257-00L Advanced Solid State Physics
402-0535-00L Introduction to Magnetism