From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

Mirko Meboldt: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Mirko Meboldt
FieldProduct Development and Engineering Design
Address
Chair of Product Dev.& Eng. Design
ETH Zürich, LEE O 210
Leonhardstrasse 21
8092 Zürich
SWITZERLAND
Award: The Golden Owl
Telephone+41 44 632 72 38
E-mailmeboldtm@ethz.ch
DepartmentMechanical and Process Engineering
RelationshipFull Professor

NumberTitleECTSHoursLecturers
151-0067-10LEngineering Tool IV: Sketching and Visualization of Technical Concepts Restricted registration - show details
All Engineering Tool courses are for MAVT-Bachelor students only.

Number of participants limited to 20.

Only one course can be chosen per semester.
0.4 credits1KH. Stahl, M. Meboldt
AbstractThis course is offered by the Design and Technology Lab Zurich. Effective visualizations of ideas are essential to communicate technical concepts. This course focusses on the basics of a coherent draft design through forms of sketches using various simple techniques.
ObjectiveMastering various simple techniques for the visualization of technical ideas.
ContentBasics in: Perspective, line drawing, proportions, implementation of the plan views of perspective
Lecture noteswill be distributed
LiteratureIt requires no further books
Prerequisites / NoticeMax 20 participants
Material: Paper and pens
151-0079-52LSkinfactory BioReactor Restricted registration - show details
This course is part of a one-year course. The 14 credit points will be issued at the end of FS2017 with new enrolling for the same Focus-Project in FS2017.

For MAVT BSc and ITET BSc only.

Prerequisites for the focus projects:
a. Basis examination successfully passed
b. Block 1 and 2 successfully passed
0 credits15AM. Meboldt
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the
basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic
contents
- Problem structuring, solution identification in indistinct problem
definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD,
CAE, PDM)
- Convert and experience technical solutions
151-0301-00LMachine Elements2 credits1V + 1UM. Meboldt, Q. Lohmeyer
AbstractIntroduction to machine elements and mechanical systems as basics of product development. Case studies of their application in products and systems.
ObjectiveThe students get an overview of the main mechanical components (machine elements) which are used in mechanical engineering. Selected examples will demonstrate how these can be assembled into functional parts and complete systems such as machinery, tools or actuators. At the same time, also the problem of production (production-oriented design) is discussed.
In concurrent lectures / exercises "technical drawing and CAD" the design implementation will be practiced.
Content- Innovation Process: A Quick Overview
- Stages of the planning and design process
- Requirements for a design and technical implementation
- Choice of materials - Basic principles of a material-specific design
- Manufacturing process - fundamentals of a production-oriented design
- Connections, fuses, seals
- Machine-standard elements
- Storage & guides
- Transmission and its components
- Drives

The idea of machine elements is complemented by case studies and illustrated.
Lecture notesThe lecture slides will be published beforehand on the website of the pd|z.
Prerequisites / NoticeFor Bachelor studies in Mechanical and Process Engineering, the lecture "Maschinenelemente" (HS) is examined together with "Innovationsprozess" (FS) in the exam "Basisprüfung Maschinenelemente and Innovationsprozess".
151-0655-00LSkills for Creativity and Innovation4 credits3GI. Goller, C. Kobe, M. Meboldt
AbstractThis lecture aims to enhance the knowledge and competency of students regarding their innovation capability. An overview on prerequisites of and different skills for creativity and innovation in individual & team settings is given. The focus of this lecture is clearly on building competencies - not just acquiring knowledge.
Objective- Basic knowledge about creativity and skills
- Knowledge about individual prerequisites for creativity
- Development of individual skills for creativity
- Knowledge about teams
- Development of team-oriented skills for creativity
- Knowledge and know-how about transfer to idea generation teams
ContentBasic knowledge about creativity and skills:
- Introduction into creativity & innovation: definitions and models

Knowledge about individual prerequisites for creativity:
- Personality, motivation, intelligence

Development of individual skills for creativity:
- Focus on creativity as problem analysis & solving
- Individual skills in theoretical models
- Individual competencies: exercises and reflection

Knowledge about teams:
- Definitions and models
- Roles in innovation processes

Development of team-oriented skills for creativity:
- Idea generation and development in teams
- Cooperation & communication in innovation teams

Knowledge and know-how about transfer to idea generation teams:
- Self-reflection & development planning
- Methods of knowledge transfer
Lecture notesSlides, script and other documents will be distributed via moodle.ethz.ch
(access only for students registered to this course)
LiteraturePlease refer to lecture script.
151-0761-00LPractice Course to Focus Projects on Product Development Restricted registration - show details
Only students for focus projects. 2 up to 3 students per focus project.
3 credits3GR. P. Haas, C. R. Dietzsch, I. Goller, M. Meboldt, C. Schorno
AbstractThis course provides comprehensive input to ongoing focus project teams in the areas of project management, communication and presentation, as well as dealing with the media, coaches and patents and safety issues.
ObjectiveParticipants will receive tips, hints and background information from experienced tutors appliccable to current projects.
ContentProject Management
- Creating a solid project base
- Project planning and controlling
- Product validation and testing
- Problem solving cycle and decicion taking transparent for others

Communication
- Public Relations in a Nutshell
- How to aquire and manage suppliers and sponsors
- Technical repots
- Review presentations

Handling of and guidance to
- Expectation management and dealing with conflicts
- Safety issues
- Issues regardring patents
Lecture notesLecture notes and documentation will be electronically available.
Prerequisites / Notice- only for students participating in a Focus Project in the same semester
151-3201-00LStudies on Engineering Design3 credits6AK. Shea, P. Ermanni, M. Meboldt
AbstractThis course introduces students to the exciting world of Engineering Design research, which crosses disciplines and requires a variety of skills. Each student identifies a topic in Engineering Design for further investigation, either based on those proposed or a new, agreed topic.
ObjectiveStudents gain their first knowledge of Engineering Design research and carry out their first, independent scientific study. Students learn how to read scientific literature and critically analyze and discuss them, gain hands-on experience in the area and learn how to document their work concisely through a report and short presentation.
ContentStudents identify 5-10 journal articles, or scientifically equivalent, in consultation with the supervisor and can define a small, related project in the area to gain hands-on experience. In the beginning of the semester, students develop with the supervisor a 2-page proposal outlining the objective of the study, tasks to be carried out and a brief time plan for the work. Once agreed, the project starts resulting in a report combining the state-of-art literature review and project results, if carried out.

The students work independently on a study of selected topics in the field of Engineering Design. They start with a selection of the topic, identify scientific papers for the literature research and can define a small, related project. The results (e.g. state-of-the-art literature review and small project results where defined) are evaluated with respect to predefined criteria.
Prerequisites / NoticeStudents take this course in parallel to the Lecture "Grand Challenges in Engineering Design". A general meeting will be held in the beginning of the semester to propose topics for the studies. Studies are carried out individually and can be the pre-study for a Bachelor thesis.
151-3203-00LGrand Challenges in Engineering Design1 credit3SP. Ermanni, M. Meboldt, K. Shea
AbstractThe course is structured in three main blocks, each of them addressing a specific grand challenge in engineering design. Each block is composed of an introductory lecture and two to three invited talks, considering a good mix between speakers coming from academia and industry. Each talk is introduced and moderated by the students.
ObjectiveThe aim of the course is to introduce students to the engineering design research and practice in a multitude of Mechanical Engineering disciplines and convey knowledge from both academia and industry about state of the art methods, tools and processes.
ContentThe students are exposed to a variety of topics in the field of Engineering Design. Topics are bundled in three main grand challenges and include an introductory lecture held by one of the responsible Professors and 2-3 invited talks of 45 min. each, addressing specific issues. The success of the course is largely dependant on active involvement of the students. Accordingly, a small group of students (1-3) is asked to introduce and moderate each external talk. The group will therefore gather adequate information about the speaker and topic, read and synthesize relevant documents and scientific papers, prepare questions to motivate the interaction with the audience and summarize, at the end of the lecture, the discussed points and outcome.
Prerequisites / NoticeOffered in English and German
227-0981-00LCross-Disciplinary Research and Development in Medicine and Engineering Restricted registration - show details
A maximum of 12 medical degree students and 12 (biomedical) engineering degree students can be admitted, their number should be equal.
4 credits2V + 2AV. Kurtcuoglu, D. de Julien de Zelicourt, M. Meboldt, M. Schmid Daners, O. Ullrich
AbstractCross-disciplinary collaboration between engineers and medical doctors is indispensable for innovation in health care. This course will bring together engineering students from ETH Zurich and medical students from the University of Zurich to experience the rewards and challenges of such interdisciplinary work in a project based learning environment.
ObjectiveThe main goal of this course is to demonstrate the differences in communication between the fields of medicine and engineering. Since such differences become the most evident during actual collaborative work, the course is based on a current project in physiology research that combines medicine and engineering. For the engineering students, the specific aims of the course are to:

- Acquire a working understanding of the anatomy and physiology of the investigated system;
- Identify the engineering challenges in the project and communicate them to the medical students;
- Develop and implement, together with the medical students, solution strategies for the identified challenges;
- Present the found solutions to a cross-disciplinary audience.
ContentAfter a general introduction to interdisciplinary communication and detailed background on the collaborative project, the engineering students will receive tailored lectures on the anatomy and physiology of the relevant system. They will then team up with medical students who have received a basic introduction to engineering methodology to collaborate on said project. In the process, they will be coached both by lecturers from ETH Zurich and the University of Zurich, receiving lectures customized to the project. The course will end with each team presenting their solution to a cross-disciplinary audience.
Lecture notesHandouts and relevant literature will be provided.
363-1065-00LDesign Thinking: Human-Centred Solutions to Real World Challenges Restricted registration - show details
Due to didactic reasons, the number of participants is limited to 30.

All interested students are invited to apply for this course by sending a one-page motivation letter until 14.9.16 to Florian Rittiner (frittiner@ethz.ch).

Additionally please enroll via mystudies. Places will be assigned after the first lecture on the basis of your motivation letter and commitment for the class.
5 credits5GA. Cabello Llamas, F. Rittiner, S. Brusoni, C. Hölscher, M. Meboldt
AbstractThe goal of this course is to engage students in a multidisciplinary collaboration to tackle real world problems. Following a design thinking approach, students will work in teams to solve a set of design challenges that are organized as a one-week, a three-week, and a final six-week project in collaboration with an external project partner.

Information and application: www.sparklabs.ch/ethz
ObjectiveDuring the course, students will learn about different design thinking methods and tools. This will enable them to:
- Generate deep insights through the systematic observation and interaction of key stakeholders.
- Engage in collaborative ideation with a multidisciplinary (student) team.
- Rapidly prototype and iteratively test ideas and concepts by using various materials and techniques.
ContentThe purpose of this course is to equip the students with methods and tools to tackle a broad range of problems. Following a Design Thinking approach, the students will learn how to observe and interact with key stakeholders in order to develop an in-depth understanding of what is truly important and emotionally meaningful to the people at the center of a problem. Based on these insights, the students ideate on possible solutions and immediately validated them through quick iterations of prototyping and testing using different tools and materials. The students will work in multidisciplinary teams on a set of challenges that are organized as a one-week, a three-week, and a final six-week project with an external project partner. In this course, the students will learn about the different Design Thinking methods and tools that are needed to generate deep insights, to engage in collaborative ideation, rapid prototyping and iterative testing.

Design Thinking is a deeply human process that taps into the creative abilities we all have, but that get often overlooked by more conventional problem solving practices. It relies on our ability to be intuitive, to recognize patterns, to construct ideas that are emotionally meaningful as well as functional, and to express ourselves through means beyond words or symbols. Design Thinking provides an integrated way by incorporating tools, processes and techniques from design, engineering, the humanities and social sciences to identify, define and address diverse challenges. This integration leads to a highly productive collaboration between different disciplines.

For more information and the application visit: http://sparklabs.ch/ethz
Prerequisites / NoticeClass attendance and active participation is crucial as much of the learning occurs through the work in teams during class. Therefore, attendance is obligatory for every session. Please also note that the group work outside class is an essential element of this course, so that students must expect an above-average workload.