Elisabet Capón García: Katalogdaten im Herbstsemester 2016

NameFrau Dr. Elisabet Capón García
Adresse
Swiss Data Science Center (SDSC)
ETH Zürich, TUR D 18
Turnerstrasse 1
8092 Zürich
SWITZERLAND
E-Mailelisabet.capon@sdsc.ethz.ch
DepartementChemie und Angewandte Biowissenschaften
BeziehungDozentin

NummerTitelECTSUmfangDozierende
529-0459-00LCase Studies in Process Design7 KP3AK. Hungerbühler, E. Capón García
KurzbeschreibungThe learning objective is to design, simulate and optimise a real (bio-)chemical process from a process systems perspective. Specifically, a commercial process simulation software will be used for the process simulation and optimisation. Students have to integrate knowledge and develop engineering thinking and skills acquired in the other courses of the curriculum.
LernzielSimulate and optimise a chemical production process using a commercial process simulation software.
InhaltThe learning objectives (LO) of this course are:

LO 1: Create a model describing the production process
- Students will apply a commercial process simulator systematically for process creation and analysis.
- Students will create a simulation flowsheet for steady-state simulation
- Students will discriminate the models for the different process units.
- Students will evaluate the sequencing in which process units associated with recycle loops are solved to obtain converged material and energy balances.

LO 2: Evaluate the performance of the production process
- Students will analyse and understand the degrees of freedom in modelling process units and flowsheets.
- Students will understand the role of process simulators in process creation.
- Students will make design specifications and follow the iterations implemented to satisfy them.
- Students will judge the role of process simulators in equipment sizing and costing and profitability analysis.
- Students will assess the economic performance of the process, including investment and operation costs.
- Students will assess the environmental impact of the production process.

LO 3: Optimise the design and operating conditions of the production process
- Students will solve sensitivity analyses and optimisations are conducted considering technical and economic criteria.
- Students will generate process integration alternatives to improve the initial production process.
- Students will optimise the production process considering economic and environmental criteria.
Voraussetzungen / BesonderesBefore the case study week, students do exercises in the course of Process Simulation and Flowsheeting in order to get familiar with Aspen Plus simulation software (compulsory). They also receive guidelines for environmental impact assessment and skills on oral presentations.

The problem statement and detailed instructions are provided at the beginning of the case study week.

During the case study week:
- Students work in teams of 3-5 people.
- Students have to pose and solve the different questions presented in the problem statement.
- Students have to coordinate the activities, the preparation of the written report and the oral presentation.
- Students will be assessed in specific questions they may find along the case study development.
- An industry expert, namely a chemical engineer from ETHZ, exchanges with the groups.

One week after the case study week, the groups deliver the written report.

One week later, the students receive the comments on the work done, and implement required corrections.

All the groups prepare a single presentation comparing the results and showing their achievements.

Finally, the students visit the real industrial process at the site. They also present their work to the industrial experts on the day of the industry visit.
529-0549-01LFallstudien I3 KP3AK. Hungerbühler, E. Capón García, U. Fischer
KurzbeschreibungSchwerpunkt von Teil I der Fallstudie ist eine literaturbasierte Gegenüberstellung verschiedener Prozessvarianten. Zu diesem Zweck sollen relevante Daten über einen vorgegebenen Prozess gesammelt und eine vergleichende Prozessbeurteilung erarbeitet werden. Eine vielversprechende Prozessvariante wird in der Folge ausgewählt und ein Blockdiagramm sowie Massen- und Energiebilanzen erstellt.
Lernziel- Kennenlernen verschiedener Informationsträger
- Anwendung des Stoffes aus den Vorlesungen
- Problemzentriertes Vorgehen (Anwendung verschiedener Methoden auf den selben Gegenstand)
- Projektarbeit (Planung, Teamarbeit)
- Berichterstattung und Vortragstechnik
InhaltSchwerpunkt von Teil I der Fallstudie ist eine literaturbasierte Gegenüberstellung verschiedener Prozessvarianten. Zu diesem Zweck sollen relevante Daten über einen vorgegebenen Prozess zusammengetragen und bearbeitet werden. Dies sind zum einen Stoffdaten (physiko-chemische, toxikologische, sicherheits- und umweltrelevante Daten für die beteiligten Stoffe) und zum anderen Informationen über Synthesewege und deren technische Realisierung (Reaktionsmechanismen und Kinetik, benötigte Aufarbeitungs- und Trennverfahren, sowie ökonomische Kenngrössen, Umwelt- und Sicherheitsaspekte). Anhand dieser aus Literatur und Datenbanken zusammengetragenen Informationen und qualitativer und quantitativer Zielgrössen erfolgt eine erste vergleichende Prozessbeurteilung. Eine vielversprechende Prozessvariante wird in der Folge ausgewählt und ein Blockdiagramm sowie Massen- und Energiebilanzen erstellt.
529-0613-00LProcess Simulation and Flowsheeting7 KP3GE. Capón García, K. Hungerbühler
KurzbeschreibungThis course encompasses the theoretical principles of chemical process simulation, as well as its practical application in process analysis and optimization. The techniques for simulating stationary and dynamic processes are presented, and illustrated with case studies. Commercial software packages are presented as a key engineering tool for solving process flowsheeting and simulation problems.
LernzielThis course aims to develop the competency of chemical engineers in process flowsheeting and simulation. Specifically, students will develop the following skills:
- Deep understanding of chemical engineering fundamentals: the acquisition of new concepts and the application of previous knowledge in the area of chemical process systems and their mechanisms are crucial to intelligently simulate and evaluate processes.
- Modeling of general chemical processes and systems: students have to be able to identify the boundaries of the system to be studied and develop the set of relevant mathematical relations, which describe the process behavior.
- Mathematical reasoning and computational skills: the familiarization with mathematical algorithms and computational tools is essential to be capable of achieving rapid and reliable solutions to simulation and optimization problems. Hence, students will learn the mathematical principles necessary for process simulation and optimization, as well as the structure and application of process simulation software. Thus, they will be able develop criteria to correctly use commercial software packages and critically evaluate their results.
InhaltOverview of process simulation and flowsheeting
- Definition and fundamentals
- Classification: stationary (steady-state) versus dynamic (transient state) systems
- Fields of application
- Case studies

Process modeling
- Modeling strategies of process systems
- Mass conservation
- Species balance
- Energy conservation
- Momentum balance
- Multiphase-systems: equilibrium & non-equilibrium models
- Process system model

Process simulation
- Process specification
- Introduction to process specification
- Classification of mathematical models: AMS, DOE, DAE, PDE
- Model validation
- Software tools
- Solution methods for process flowsheeting
- Simultaneous methods
- Sequential methods
- Dynamic simulation
- Numerical solution: explicit and implicit methods
- Continuous-discrete simulation: handling of discontinuities

Process optimization and analysis
- Classification of optimization problems
- Linear programming
- Non-linear programming
- Dynamic programming
- Optimization methods in process flowsheeting
- Sequential methods
- Simultaneous methods

Commercial software for simulation: Aspen Plus
- Thermodynamic property methods
- Reaction and reactors
- Separation / columns
- Convergence & debugging
LiteraturAn exemplary literature list is provided below:
- Biegler, L.T., Grossmann I.E., Westerberg A.W., 1997, systematic methods of chemical process design. Prentice Hall, Upper Saddle River, US.
- Boyadjiev, C., 2010, Theoretical chemical engineering: modeling and simulation. Springer Verlag, Berlin, Germany.
- Ingham, J., Dunn, I.J., Heinzle, E., Prenosil, J.E., Snape, J.B., 2007, Chemical engineering dynamics: an introduction to modelling and computer simulation. John Wiley & Sons, United States.
- Reklaitis, G.V., 1983, Introduction to material and energy balances. John Wiley & Sons, United States.
Voraussetzungen / BesonderesA basic understanding of material and energy balances, thermodynamic property methods and typical unit operations (e.g., reactors, flash separations, distillation/absorption columns etc.) is required.
529-0699-00LSafety and Environmental Technology of Chemical Processes and Products0 KP2SK. Hungerbühler, C. Bogdal, E. Capón García, F. C. I. Meemken, M. Scheringer, N. von Götz, Z. Wang
KurzbeschreibungThis course comprises a series of seminars on current topics regarding environmental impact and safety of chemical products and processes. Invited national and international speakers from public and industrial research institutions present their latest developments and applications, and show future trends.
LernzielGiving the students the opportunity to experience recent research progress at first hand; encouraging participation in discussions with speaker and audience.