From 2 November 2020, the autumn semester 2020 will take place online. Exceptions: Courses that can only be carried out with on-site presence.
Please note the information provided by the lecturers via e-mail.

Sebastian Huber: Catalogue data in Autumn Semester 2016

Name Dr. Sebastian Huber
FieldCondensed Matter Theory and Quantum Optics
Address
Institut für Theoretische Physik
ETH Zürich, HIT K 11.2
Wolfgang-Pauli-Str. 27
8093 Zürich
SWITZERLAND
Telephone+41 44 633 25 65
E-mailsebastian.huber@itp.phys.ethz.ch
URLhttp://cmt-qo.phys.ethz.ch
DepartmentPhysics
RelationshipLecturer

NumberTitleECTSHoursLecturers
402-0101-00LThe Zurich Physics Colloquium Information 0 credits1KR. Renner, G. Aeppli, C. Anastasiou, N. Beisert, G. Blatter, S. Cantalupo, M. Carollo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, T. K. Gehrmann, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, B. Moore, D. Pescia, A. Refregier, A. Rubbia, K. Schawinski, T. C. Schulthess, M. Sigrist, M. Troyer, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev, O. Zilberberg
AbstractResearch colloquium
Objective
Prerequisites / NoticeOccasionally, talks may be delivered in German.
402-0800-00LThe Zurich Theoretical Physics Colloquium Information 0 credits1KS. Huber, C. Anastasiou, N. Beisert, G. Blatter, M. Gaberdiel, T. K. Gehrmann, G. M. Graf, P. Jetzer, L. M. Mayer, B. Moore, R. Renner, T. C. Schulthess, M. Sigrist, M. Troyer, O. Zilberberg, University lecturers
AbstractResearch colloquium
ObjectiveThe Zurich Theoretical Physics Colloquium is jointly organized by the University of Zurich and ETH Zurich. Its mission is to bring both students and faculty with diverse interests in theoretical physics together. Leading experts explain the basic questions in their field of research and communicate the fascination for their work.
402-0801-66LMechanical Metamaterials4 credits2V + 1US. Huber
AbstractA mechanical metamaterial derives its static or dynamic properties not from its microscopic composition but rather through its clever engineering at larger scales. In this course we introduce the basic principles behind the design of modern mechanical metamaterials such as the use of Bragg scattering, local resonances, topological band-structures, and non-linear effects.
ObjectiveThe students should get acquainted with a modern toolbox in the design of mechanical metamaterials. Equipped with the knowledge of the key design principles, the students will be able to choose the appropriate approach to create a metamaterial with a pre-defined functionality either for dynamic applications such as vibration isolation, wave-guiding, or the design of a heat-diode, or static properties such as stress absorption or the design of mechanisms used in robotics.
Content1.) Wave propagation in continuous systems
2.) Wave properties
3.) Discrete systems
4.) Local resonances
5.) Topology by example
6.) Topological classification
7.) Static systems
8.) Non-linear waves
Lecture notesHand-outs will be available in class.