Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Anton Wutz: Catalogue data in Autumn Semester 2019

Name Prof. Dr. Anton Wutz
FieldGenetics
Address
Inst. f. Molecular Health Sciences
ETH Zürich, HPL E 12
Otto-Stern-Weg 7
8093 Zürich
SWITZERLAND
Telephone+41 44 633 08 48
E-mailawutz@ethz.ch
DepartmentBiology
RelationshipFull Professor

NumberTitleECTSHoursLecturers
551-1201-00LComputational Methods in Genome and Sequence Analysis Restricted registration - show details
Number of participants limited to 7.

The enrolment is done by the D-BIOL study administration.
6 credits7GA. Wutz
AbstractThis course aims to provide students with a comprehensive overview of computational methods for sequence analysis and assist with developing skills for application of computational approaches by experimental scientists in the life sciences.
ObjectiveMethods for analyzing animal genomes are increasingly becoming important for applications in human health and biotechnology suggesting that the experience will be useful to develop relevant expertise for a broad range of functions. Students will have the opportunity to advance their knowledge in programming by focusing on algorithms for genome and gene sequence analysis. A major goal of the course will be to lead the student to an independent and empowered attitude towards computational problems. For reaching this goal the students will work on an implementation of a solution for a set real-world problem in genome and sequence analysis under guided supervision.
Content•Understanding the information in biological sequences and quantifying similarity
•Introduction to algorithms for sequence comparison and searches
•Implementation of sequence comparisons and searches in Python
•Accessing data formats associated with genome sequence analysis tasks
•Understanding the anatomy of a real world sequence analysis project
•Applying tools for sequence alignment and estimating error rates
•Ability to implement a solution to a problem in sequence analysis using Python
•Accessing genome annotation and retrieving relevant information in Pandas
•Application of Genomic intervals and arrays for sequence analysis with HTSeq

The course will consist of a series of lectures, assignments for implementing elementary tasks in Python, project development and discussion workshops, and 3 and a half week of practical work implementing a Pythons script as a solution to a real world problem associated with sequence analysis. At the end of the course students will explain their solutions and demonstrate the functionality of their implementations, which will then be discussed and commented on by the group. It is expected that students will be able to apply the knowledge to improve on concrete problems.
Prerequisites / Notice- It is recommended to bring your own computer with a Python installation to the course
- simple computers can be provided
- Programming basics with Python
551-1309-00LRNA-Biology Restricted registration - show details
Number of participants limited to 20.

The enrolment is done by the D-BIOL study administration.
6 credits7GF. Allain, C. Ciaudo, J. Corn, J. Hall, M. Jinek, S. Jonas, R. Santoro, O. Voinnet, K. Weis, A. Wutz
AbstractIntroduction to the diversity of current RNA-research at all levels from structural biology to systems biology using mainly model systems like S. cerevisiae (yeast), mammalian cells.
ObjectiveThe students will obtain an overview about the diversity of current RNA-research. They will learn to design experiments and use techniques necessary to analyze different aspects of RNA biology. Through lectures and literature seminars, they will learn about the burning questions of RNA research and discuss approaches to address these questions experimentally. In practical lab projects the students will work in one of the participating laboratories. Finally, they will learn how to present and discuss their data in an appropriate manner. Student assessment is a graded semester performance based on individual performance in the laboratory, the written exam and the poster presentation.
LiteratureDocumentation and recommended literature will be provided at the beginning and during the course.
Prerequisites / NoticeThe course will be taught in English.
551-1709-00LGenomic and Genetic Methods in Cell and Developmental Biology Restricted registration - show details
Number of participants limited to 8.

The enrolment is done by the D-BIOL study administration.
6 credits7GA. Wutz, C. Ciaudo, M. Kopf, T. Schroeder
AbstractThis course aims to provide students with a comprehensive overview of mammalian developmental biology and stem cell systems both on the theoretical as well as the experimental level. Centering the course on genetic and genomic methods engages the students in contemporary research and prepares for future studies in the course of semester and master projects.
Objective- Understanding mammalian development
- Introduction to stem cells systems
- Working with cultured cells
- Translational aspects of mammalian cell biology
ContentThe course will consist of a series of lectures, assay assignments, project development and discussion workshops, and 2 and a half week of lab work with different mammalian cell systems embedded in real life research projects. At the end of the course students will take an exam consisting of questions on the topic of the lectures and workshops. It is expected that students will be able to apply the knowledge to concrete problems.