Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Diane de Julien de Zelicourt: Catalogue data in Autumn Semester 2016

NameMs Diane de Julien de Zelicourt
Address
Professur für Thermodynamik
ETH Zürich, ML J 27.1
Sonneggstrasse 3
8092 Zürich
SWITZERLAND
Telephone+41 44 632 02 28
E-maildianed@ethz.ch
DepartmentInformation Technology and Electrical Engineering
RelationshipLecturer

NumberTitleECTSHoursLecturers
227-0981-00LCross-Disciplinary Research and Development in Medicine and Engineering Restricted registration - show details
A maximum of 12 medical degree students and 12 (biomedical) engineering degree students can be admitted, their number should be equal.
4 credits2V + 2AV. Kurtcuoglu, D. de Julien de Zelicourt, M. Meboldt, M. Schmid Daners, O. Ullrich
AbstractCross-disciplinary collaboration between engineers and medical doctors is indispensable for innovation in health care. This course will bring together engineering students from ETH Zurich and medical students from the University of Zurich to experience the rewards and challenges of such interdisciplinary work in a project based learning environment.
ObjectiveThe main goal of this course is to demonstrate the differences in communication between the fields of medicine and engineering. Since such differences become the most evident during actual collaborative work, the course is based on a current project in physiology research that combines medicine and engineering. For the engineering students, the specific aims of the course are to:

- Acquire a working understanding of the anatomy and physiology of the investigated system;
- Identify the engineering challenges in the project and communicate them to the medical students;
- Develop and implement, together with the medical students, solution strategies for the identified challenges;
- Present the found solutions to a cross-disciplinary audience.
ContentAfter a general introduction to interdisciplinary communication and detailed background on the collaborative project, the engineering students will receive tailored lectures on the anatomy and physiology of the relevant system. They will then team up with medical students who have received a basic introduction to engineering methodology to collaborate on said project. In the process, they will be coached both by lecturers from ETH Zurich and the University of Zurich, receiving lectures customized to the project. The course will end with each team presenting their solution to a cross-disciplinary audience.
Lecture notesHandouts and relevant literature will be provided.