Rachel Grange: Katalogdaten im Frühjahrssemester 2016

NameFrau Prof. Dr. Rachel Grange
LehrgebietPhotonik
Adresse
Institut für Quantenelektronik
ETH Zürich, HPT H 2
Auguste-Piccard-Hof 1
8093 Zürich
SWITZERLAND
Telefon+41 44 633 37 08
E-Mailgrangera@ethz.ch
URLhttp://www.ong.ethz.ch/
DepartementPhysik
BeziehungAusserordentliche Professorin

NummerTitelECTSUmfangDozierende
402-0101-00LThe Zurich Physics Colloquium Information 0 KP1KR. Renner, G. Aeppli, C. Anastasiou, N. Beisert, G. Blatter, M. Carollo, C. Degen, G. Dissertori, K. Ensslin, T. Esslinger, J. Faist, M. Gaberdiel, G. M. Graf, R. Grange, J. Home, S. Huber, A. Imamoglu, P. Jetzer, S. Johnson, U. Keller, K. S. Kirch, S. Lilly, L. M. Mayer, J. Mesot, M. R. Meyer, B. Moore, F. Pauss, D. Pescia, A. Refregier, A. Rubbia, K. Schawinski, T. C. Schulthess, M. Sigrist, A. Vaterlaus, R. Wallny, A. Wallraff, W. Wegscheider, A. Zheludev
KurzbeschreibungResearch colloquium
Lernziel
Voraussetzungen / BesonderesOccasionally, talks may be delivered in German.
402-0468-15LNanomaterials for Photonics Information 6 KP2V + 1UR. Grange
KurzbeschreibungThe lecture describes various types of nanomaterials (semiconductor, metal, dielectric, carbon-based...) for photonic applications (optoelectronics, plasmonics, photonic crystal...). It starts with nanophotonic concepts of light-matter interactions, then the synthesis/fabrication methods, the optical characterization techniques and the applications (lab-on-a-chip, nanofluidic, nanomarkers...).
LernzielThe students will acquire theoretical and experimental knowledge in the different types of nanomaterials (semiconductors, metals, dielectric, carbon-based, ...) and their uses as building blocks for advanced applications in photonics (optoelectronics, plasmonics, photonic crystal, ...). Together with the exercises, the students will learn (1) to read, summarize and discuss scientific articles related to the lecture, (2) to estimate order of magnitudes with calculations using the theory seen during the lecture, (3) to prepare a short oral presentation about one topic related to the lecture, and (4) to imagine a useful photonic device.
Inhalt1. Introduction to Nanomaterials for photonics
-Classification of the materials in sizes and speed, Orders of magnitude, permittivity
-Nanophotonics concepts: confinement of matter and of radiation
-Analogy between photons and electrons:

2. Generation of Nanomaterials
-Top-down approach
-Bottom-up approach

3. Characterization of Nanomaterials
-Optical microscopy: Bright and dark field, fluorescence, confocal, high resolution: PALM (STORM), STED
-Electron microscopy : SEM, TEM
-Scanning probe microscopy: STM, AFM
-Near field microscopy: SNOM

4. Plasmonics
-Surface plasmon and localized surface plasmon (sphere, rod, shell)
-Theoretical models to calculate the radiated field
-Fabrication of plasmonic structures: Chemical synthesis, Nanofabrication
-Applications: field enhancement, optical antennas, nanotools for medicine

5. Organic nanomaterials
-Organic quantum-confined structure: nanomers and quantum dots.
-Carbon nanotubes: properties, bandgap description, fabrication
-Graphene: motivation, fabrication, devices

6. Semiconductors
-Crystalline structure, wave function, electronic states, band structure
-Optical properties related to quantum confinement
-Example of effects: absorption, photoluminescence, fluorescence, Stark effect
-Solid-state-lasers : edge emitting, surface emitting, quantum cascade

7. Photonic crystals
-Analogy photonic and electronic crystal
-1D, 2D, 3D photonic crystal
-Features: band gap, local enhancement, superprism, anomalous refraction, defects

8. Optofluidic
-History of micro-nano-opto-fluidic
-Nanoscale forces and scale law

9. Nanomarkers
-Contrast in imaging modalities
-Optical imaging mechanisms : Stokes-shift vs Anti-Stokes Shift Process
-Static versus dynamic probes
SkriptSlides will be available for downloading
LiteraturReferences will be given during the lecture
Voraussetzungen / BesonderesBasics of solid-state physics (i.e. energy bands) can help