Dirk Mohr: Katalogdaten im Herbstsemester 2016

NameHerr Prof. Dr. Dirk Mohr
LehrgebietKünstliche Intelligenz in Mechanik und Fertigung
Adresse
KI in Mechanik und Fertigung
ETH Zürich, CLA F 9
Tannenstrasse 3
8092 Zürich
SWITZERLAND
Telefon+41 44 632 26 12
E-Maildmohr@ethz.ch
URLhttp://mohr.ethz.ch
DepartementMaschinenbau und Verfahrenstechnik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
151-0525-00LWave Propagation in Solids4 KP2V + 1UJ. Dual, D. Mohr
KurzbeschreibungPlane Waves, harmonic waves, Fourier analysis and synthesis, dispersion, distorsion, damping, group and phase velocity, transmission and reflection, impact, waves in linear elastic continua, elastic plastic waves, experimental and numerical methods in wave propagation.
LernzielStudents learn, which technical problems must be approached using the methods used in wave propagation in solids. Furthermore, they learn to use these methods and develop an intuitive feeling for phenomena that can be expected in various situations.
InhaltWave Propagation in solids including applications.
Content: Phenomenology of wave propagation ( plane waves, harmonic waves, harmonic analysis and synthesis, dispersion, attenuation, group and phase velocity), transmission and reflection, impact problems, waves in linear elastic media ( P- Waves, S-Waves, Rayleigh waves, guided waves), elastic plastic waves, experimental and numerical methods.
SkriptHandouts
LiteraturVarious books will be recommended pertaining to the topics covered.
Voraussetzungen / BesonderesLanguage according to the wishes of students.
151-0735-00LDynamic Behavior of Materials and Structures
Findet dieses Semester nicht statt.
4 KP2V + 2UD. Mohr
KurzbeschreibungLectures and computer labs concerned with the modeling of the deformation response and failure of engineering materials (metals, polymers and composites) subject to extreme loadings during manufacturing, crash, impact and blast events.
LernzielStudents will learn to apply, understand and develop computational models of a large spectrum of engineering materials to predict their dynamic deformation response and failure in finite element simulations. Students will become familiar with important dynamic testing techniques to identify material model parameters from experiments. The ultimate goal is to provide the students with the knowledge and skills required to engineer modern multi-material solutions for high performance structures in automotive, aerospace and navel engineering.
InhaltTopics include viscoelasticity, temperature and rate dependent plasticity, dynamic brittle and ductile fracture; impulse transfer, impact and wave propagation in solids; computational aspects of material model implementation into hydrocodes; simulation of dynamic failure of structures;
SkriptSlides of the lectures, relevant journal papers and users manuals will be provided.
LiteraturVarious books will be recommended covering the topics discussed in class
Voraussetzungen / BesonderesCourse in continuum mechanics (mandatory), finite element method (recommended)