Ab 2. November 2020 findet das Herbstsemester 2020 online statt. Ausnahmen: Veranstaltungen, die nur mit Präsenz vor Ort durchführbar sind.
Bitte beachten Sie die per E-Mail kommunizierten Informationen der Dozierenden.

András Vörös: Katalogdaten im Frühjahrssemester 2019

NameHerr Dr. András Vörös
Adresse
Professur für Soziale Netzwerke
ETH Zürich, WEP J 15
Weinbergstr.109
8092 Zürich
SWITZERLAND
E-Mailandras.voros@gess.ethz.ch
DepartementGeistes-, Sozial- und Staatswissenschaften
BeziehungDozent

NummerTitelECTSUmfangDozierende
851-0252-06LIntroduction to Social Networks: Theory, Methods and Applications
This course is intended for students interested in data analysis and with basic knowledge of inferential statistics.
3 KP2GC. Stadtfeld, T. Elmer, A. Vörös
KurzbeschreibungHumans are connected by various social relations. When aggregated, we speak of social networks. This course discusses how social networks are structured, how they change over time and how they affect the individuals that they connect. It integrates social theory with practical knowledge of cutting-edge statistical methods and applications from a number of scientific disciplines.
LernzielThe aim is to enable students to contribute to social networks research and to be discriminating consumers of modern literature on social networks. Students will acquire a thorough understanding of social networks theory (1), practical skills in cutting-edge statistical methods (2) and their applications in a number of scientific fields (3).
In particular, at the end of the course students will
- Know the fundamental theories in social networks research (1)
- Understand core concepts of social networks and their relevance in different contexts (1, 3)
- Be able to describe and visualize networks data in the R environment (2)
- Understand differences regarding analysis and collection of network data and other type of survey data (2)
- Know state-of-the-art inferential statistical methods and how they are used in R (2)
- Be familiar with the core empirical studies in social networks research (2, 3)
- Know how network methods can be employed in a variety of scientific disciplines (3)