Alexandros Emboras: Catalogue data in Spring Semester 2020

Name PD Dr. Alexandros Emboras
FieldNeuromorphic Computing: from Devices to Applications
Address
Institut für Integrierte Systeme
ETH Zürich, ETZ J 76.1
Gloriastrasse 35
8092 Zürich
SWITZERLAND
Telephone+41 44 632 78 65
E-mailemborasa@ethz.ch
DepartmentInformation Technology and Electrical Engineering
RelationshipPrivatdozent

NumberTitleECTSHoursLecturers
227-0159-00LSemiconductor Devices: Quantum Transport at the Nanoscale Information 6 credits2V + 2UM. Luisier, A. Emboras
AbstractThis class offers an introduction into quantum transport theory, a rigorous approach to electron transport at the nanoscale. It covers different topics such as bandstructure, Wave Function and Non-equilibrium Green's Function formalisms, and electron interactions with their environment. Matlab exercises accompany the lectures where students learn how to develop their own transport simulator.
ObjectiveThe continuous scaling of electronic devices has given rise to structures whose dimensions do not exceed a few atomic layers. At this size, electrons do not behave as particle any more, but as propagating waves and the classical representation of electron transport as the sum of drift-diffusion processes fails. The purpose of this class is to explore and understand the displacement of electrons through nanoscale device structures based on state-of-the-art quantum transport methods and to get familiar with the underlying equations by developing his own nanoelectronic device simulator.
ContentThe following topics will be addressed:
- Introduction to quantum transport modeling
- Bandstructure representation and effective mass approximation
- Open vs closed boundary conditions to the Schrödinger equation
- Comparison of the Wave Function and Non-equilibrium Green's Function formalisms as solution to the Schrödinger equation
- Self-consistent Schödinger-Poisson simulations
- Quantum transport simulations of resonant tunneling diodes and quantum well nano-transistors
- Top-of-the-barrier simulation approach to nano-transistor
- Electron interactions with their environment (phonon, roughness, impurity,...)
- Multi-band transport models
Lecture notesLecture slides are distributed every week and can be found at
https://iis-students.ee.ethz.ch/lectures/quantum-transport-in-nanoscale-devices/
LiteratureRecommended textbook: "Electronic Transport in Mesoscopic Systems", Supriyo Datta, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, 1997
Prerequisites / NoticeBasic knowledge of semiconductor device physics and quantum mechanics
227-0303-00LAdvanced Photonics6 credits2V + 2U + 1AA. Emboras, M. Burla, A. Dorodnyy
AbstractThe lecture gives a comprehensive insight into various types of nano-scale photonic devices, physical fundamentals of their operation, and an overview of the micro/nano-fabrication technologies. Following applications of nano-scale photonic structures are discussed in details: detectors, photovoltaic cells, atomic/ionic opto-electronic devices and integrated microwave photonics.
ObjectiveGeneral training in advanced photonic devices with an in-depth understanding of the fundamentals of theory, fabrication, and characterization. Hands-on experience with photonic and optoelectronic device technologies and theory. The students will learn about the importance of advanced photonic devices in energy, communications, digital and neuromorphic computing applications.
ContentThe following topics will be addressed:
• Photovoltaics: basic thermodynamic principles and fundamental efficiency limitations, physics of semiconductor solar cell, overview of existing solar cell concepts and underlying physical phenomena.
• Micro/nano-fabrication technologies for advanced optoelectronic devices: introduction and device examples.
• Comprehensive insight into the physical mechanisms that govern ionic-atomic devices, present the techniques required to fabricate ultra-scaled nanostructures and show some applications in digital and neuromorphic computing.
• Introduction to microwave photonics (MWP), microwave photonic links, photonic techniques for microwave signal generation and processing.
Lecture notesThe presentation and the lecture notes will be provided every week.
Literature“Atomic/Ionic Devices”:
• Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Daniele Ielmini and Rainer Waser, Wiley-VCH
• Electrochemical Methods: Fundamentals and Applications, A. Bard and L. Faulkner, John Willey & Sons, Inc.

“Photovoltaics”:
• Prof. Peter Wurfel: Physics of Solar Cells, Wiley

“Micro and nano Fabrication”:
• Prof. H. Gatzen, Prof. Volker Saile, Prof. Juerg Leuthold: Micro and Nano Fabrication, Springer

“Microwave Photonics”:
• D. M. Pozar, Microwave Engineering. J. Wiley & Sons, New York, 2005.
• M. Burla, Advanced integrated optical beam forming networks for broadband phased array antenna systems. Enschede, The Netherlands, 2013. DOI: 10.3990/1.9789036507295
• C.H. Cox, Analog optical links: theory and practice. Cambridge University Press, 2006.
Prerequisites / NoticeBasic knowledge of semiconductor physics, physics of the electromagnetic filed and thermodynamics.