Afonso Bandeira: Catalogue data in Spring Semester 2020

Name Prof. Dr. Afonso Bandeira
Professur für Mathematik
ETH Zürich, HG G 23.1
Rämistrasse 101
8092 Zürich
Telephone+41 44 632 79 54
RelationshipFull Professor

401-3940-20LStudent Seminar in Mathematics and Data: Optimization of Random Functions Restricted registration - show details
Number of participants limited to 12.
4 credits2SA. Bandeira
AbstractMore information at course webpage:
401-4944-20LMathematics of Data Science8 credits4GA. Bandeira
AbstractMostly self-contained, but fast-paced, introductory masters level course on various theoretical aspects of algorithms that aim to extract information from data.
ObjectiveIntroduction to various mathematical aspects of Data Science.
ContentThese topics lie in overlaps of (Applied) Mathematics with: Computer Science, Electrical Engineering, Statistics, and/or Operations Research. Each lecture will feature a couple of Mathematical Open Problem(s) related to Data Science. The main mathematical tools used will be Probability and Linear Algebra, and a basic familiarity with these subjects is required. There will also be some (although knowledge of these tools is not assumed) Graph Theory, Representation Theory, Applied Harmonic Analysis, among others. The topics treated will include Dimension reduction, Manifold learning, Sparse recovery, Random Matrices, Approximation Algorithms, Community detection in graphs, and several others.
Lecture notes
Prerequisites / NoticeThe main mathematical tools used will be Probability, Linear Algebra (and real analysis), and a working knowledge of these subjects is required. In addition
to these prerequisites, this class requires a certain degree of mathematical maturity--including abstract thinking and the ability to understand and write proofs.

We encourage students who are interested in mathematical data science to take both this course and ``227-0434-10L Mathematics of Information'' taught by Prof. H. Bölcskei. The two courses are designed to be
A. Bandeira and H. Bölcskei
401-5620-00LResearch Seminar on Statistics Information 0 credits1KP. L. Bühlmann, M. H. Maathuis, N. Meinshausen, S. van de Geer, A. Bandeira, R. Furrer, L. Held, T. Hothorn, D. Kozbur, C. Uhler, M. Wolf
AbstractResearch colloquium
401-5640-00LZüKoSt: Seminar on Applied Statistics Information 0 credits1KM. Kalisch, A. Bandeira, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. H. Maathuis, M. Mächler, L. Meier, N. Meinshausen, M. Robinson, C. Strobl, C. Uhler, S. van de Geer
Abstract5 to 6 talks on applied statistics.
ObjectiveKennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Gebieten, besonders in Naturwissenschaft, Technik und Medizin.
ContentIn 5-6 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen.
3 bis 4 der Vorträge stehen in der Regel unter einem Semesterthema.
Lecture notesBei manchen Vorträgen werden Unterlagen verteilt.
Eine Zusammenfassung ist kurz vor den Vorträgen im Internet unter abrufbar.
Ankündigunen der Vorträge werden auf Wunsch zugesandt.
Prerequisites / NoticeDies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.
Nach besonderem Programm. Koordinator M. Kalisch, Tel. 044 632 3435
Lehrsprache ist Englisch oder Deutsch je nach ReferentIn.
Course language is English or German and may depend on the speaker.
401-5680-00LFoundations of Data Science Seminar Information 0 creditsP. L. Bühlmann, A. Bandeira, H. Bölcskei, J. M. Buhmann, T. Hofmann, A. Krause, A. Lapidoth, H.‑A. Loeliger, M. H. Maathuis, N. Meinshausen, G. Rätsch, C. Uhler, S. van de Geer, F. Yang
AbstractResearch colloquium
401-5900-00LOptimization Seminar Information 0 credits1KA. Bandeira, R. Weismantel, R. Zenklusen
AbstractLectures on current topics in optimization.
ObjectiveThis lecture series introduces graduate students to ongoing research activities (including applications) in the domain of optimization.
ContentThis seminar is a forum for researchers interested in optimization theory and its applications. Speakers, invited from both academic and non-academic institutions, are expected to stimulate discussions on theoretical and applied aspects of optimization and related subjects. The focus is on efficient (or practical) algorithms for continuous and discrete optimization problems, complexity analysis of algorithms and associated decision problems, approximation algorithms, mathematical modeling and solution procedures for real-world optimization problems in science, engineering, industries, public sectors etc.