Robert Style: Catalogue data in Spring Semester 2021

Name Dr. Robert Style
Address
Weiche und Lebende Materialien
ETH Zürich, HCI H 537
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telephone+41 44 633 92 18
E-mailrobert.style@mat.ethz.ch
DepartmentMaterials
RelationshipLecturer

NumberTitleECTSHoursLecturers
327-3002-00LMaterials for Mechanical Engineers4 credits2V + 1UR. Spolenak, A. R. Studart, R. Style
AbstractThis course provides a basic foundation in materials science for mechanical engineers. Students learns how to select the right material for the application at hand. In addition, the appropriate processing-microstructure-property relationship will lead to the fundamental understanding of concepts that determines the mechanical and functional properties.
ObjectiveAt the end of the course, the student will able to:
• choose the appropriate material for mechanical engineering applications
• find the optimal compromise between materials property, cost and ecological impact
• understand the most important concepts that allow for the tuning of mechanical and functional properties of materials
ContentBlock A: Materials Selection
• Principles of Materials Selection
• Introduction to the Cambridge Engineering Selector
• Cost optimization and penalty functions
• Ecoselection

Block B: Mechanical properties across materials classes
• Young's modulus from 1 Pa to 1 TPa
• Failure: yield strength, toughness, fracture toughness, and fracture energy
• Strategies to toughen materials from gels to metals.

Block C: Structural Light Weight Materials
• Aluminum and magnesium alloys
• Engineering and fiber-reinforced polymers

Block D: Structural Materials in the Body
• Strength, stiffness and wear resistance
• Processing, structure and properties of load-bearing implants

Block E: Structural High Temperature Materials
• Superalloys and refractory metals
• Structural high-temperature ceramics

Block F: Materials for Sensors
• Semiconductors
• Piezoelectrica

Block G: Dissipative dynamics and bonding
• Frequency dependent materials properties (from rheology of soft materials to vibration damping in structural materials)
• Adhesion energy and contact mechanics
• Peeling and delamination

Block H: Materials for 3D Printing
• Deposition methods and their consequences for materials (deposition by sintering, direct ink writing, fused deposition modeling, stereolithography)
• Additive manufacturing of structural and active Materials
Literature• Kalpakjian, Schmid, Werner, Werkstofftechnik
• Ashby, Materials Selection in Mechanical Design
• Meyers, Chawla, Mechanical Behavior of Materials
• Rösler, Harders, Bäker, Mechanisches Verhalten der Werkstoffe