Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

Ralf Hiptmair: Katalogdaten im Herbstsemester 2016

NameHerr Prof. Dr. Ralf Hiptmair
LehrgebietMathematik
Adresse
Seminar für Angewandte Mathematik
ETH Zürich, HG G 58.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 34 04
Fax+41 44 632 11 04
E-Mailralf.hiptmair@sam.math.ethz.ch
URLhttps://www.math.ethz.ch/sam/the-institute/people/ralf-hiptmair.html
DepartementMathematik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
401-0663-00LNumerical Methods for CSE Information 7 KP4V + 2UR. Hiptmair
KurzbeschreibungThe course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.
Lernziel* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the
techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms afficiently
Inhalt1. Direct Methods for linear systems of equations
2. Least Squares Techniques
3. Data Interpolation and Fitting
4. Filtering Algorithms
8. Approximation of Functions
9. Numerical Quadrature
10. Iterative Methods for non-linear systems of equations
11. Single Step Methods for ODEs
12. Stiff Integrators
SkriptLecture materials (PDF documents and codes) will be made available to participants:

Lecture document: https://people.math.ethz.ch/~grsam/HS16/NumCSE/NumCSE16.pdf

Lecture Git repository: https://gitlab.math.ethz.ch/NumCSE/NumCSE

Tablet classroom notes: http://www.sam.math.ethz.ch/~grsam/HS16/NumCSE/NCSE16_Notes/

Lecture recording: http://www.video.ethz.ch/lectures/d-math/2016/autumn/401-0663-00L.html

Homework problems: https://people.math.ethz.ch/~grsam/HS16/NumCSE/NCSEProblems.pdf
LiteraturU. ASCHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011.

A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer, New York, 2000.

W. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006.

M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002
Voraussetzungen / BesonderesThe course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves.
401-3667-66LCase Studies Seminar (Autumn Semester 2016)3 KP2SV. C. Gradinaru, R. Hiptmair, M. Reiher
KurzbeschreibungIn der Lehrveranstaltung Fallstudien präsentieren ETH-interne und -externe Referenten Fallbeispiele aus ihren eigenen Anwendungsgebieten. Zudem müssen die Studierenden einen Kurzvortrag (10 Minuten) halten aus einer Liste von publizierten Arbeiten.
Lernziel
401-5650-00LZurich Colloquium in Applied and Computational Mathematics Information 0 KP2KR. Abgrall, H. Ammari, R. Hiptmair, A. Jentzen, S. Mishra, S. Sauter, C. Schwab
KurzbeschreibungResearch colloquium
Lernziel
406-0663-AALNumerical Methods for CSE
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
7 KP15RR. Hiptmair
Kurzbeschreibunghe course gives an introduction into fundamental techniques and algorithms of numerical mathematics which play a central role in numerical simulations in science and technology. The course focuses on fundamental ideas and algorithmic aspects of numerical methods. The exercises involve actual implementation of numerical methods in C++.
Lernziel* Knowledge of the fundamental algorithms in numerical mathematics
* Knowledge of the essential terms in numerical mathematics and the techniques used for the analysis of numerical algorithms
* Ability to choose the appropriate numerical method for concrete problems
* Ability to interpret numerical results
* Ability to implement numerical algorithms afficiently
Inhalt1. Direct Methods for linear systems of equations
2. Least Squares Techniques
3. Data Interpolation and Fitting
4. Filtering Algorithms
8. Approximation of Functions
9. Numerical Quadrature
10. Iterative Methods for non-linear systems of equations
11. Single Step Methods for ODEs
12. Stiff Integrators
SkriptLecture materials (PDF documents and codes) will be made available to participants.
LiteraturU. ASCHER AND C. GREIF, A First Course in Numerical Methods, SIAM, Philadelphia, 2011.

A. QUARTERONI, R. SACCO, AND F. SALERI, Numerical mathematics, vol. 37 of Texts in Applied Mathematics, Springer, New York, 2000.

W. Dahmen, A. Reusken "Numerik für Ingenieure und Naturwissenschaftler", Springer 2006.

M. Hanke-Bourgeois "Grundlagen der Numerischen Mathematik und des wissenschaftlichen Rechnens", BG Teubner, 2002

P. Deuflhard and A. Hohmann, "Numerische Mathematik I", DeGruyter, 2002
Voraussetzungen / BesonderesSolid knowledge about fundamental concepts and technques from linear algebra & calculus as taught in the first year of science and engineering curricula.

The course will be accompanied by programming exercises in C++ relying on the template library EIGEN. Familiarity with C++, object oriented and generic programming is an advantage. Participants of the course are expected to learn C++ by themselves.