Das Herbstsemester 2020 findet in einer gemischten Form aus Online- und Präsenzunterricht statt.
Bitte lesen Sie die publizierten Informationen zu den einzelnen Lehrveranstaltungen genau.

David Steurer: Katalogdaten im Herbstsemester 2018

NameHerr Prof. Dr. David Steurer
LehrgebietTheoretische Informatik
Adresse
Professur Theoretische Informatik
ETH Zürich, CAB H 37.1
Universitätstrasse 6
8092 Zürich
SWITZERLAND
E-Maildavid.steurer@inf.ethz.ch
URLhttps://www.dsteurer.org
DepartementInformatik
BeziehungAusserordentlicher Professor

NummerTitelECTSUmfangDozierende
252-0026-00LAlgorithmen und Datenstrukturen Information 7 KP3V + 2U + 1AM. Püschel, D. Steurer
KurzbeschreibungEs werden grundlegende Entwurfsmuster für Algorithmen sowie klassische algorithmische Probleme und Datenstrukturen behandelt. Das Zusammenspiel von Algorithmen und Datenstrukturen wird anhand von Geometrie- und Graphenproblemen illustriert. In die Graphentheorie wird kurz eingeführt.
LernzielVerständnis des Entwurfs und der Analyse grundlegender Algorithmen und Datenstrukturen.
InhaltEs werden grundlegende Algorithmen und Datenstrukturen vorgestellt und analysiert. Dazu gehören auf der einen Seite Entwurfsmuster für Algorithmen, wie Induktion, divide-and-conquer, backtracking und dynamische Optimierung, ebenso wie klassische algorithmische Probleme, wie Suchen und Sortieren. Auf der anderen Seite werden Datenstrukturen für verschiedene Zwecke behandelt, darunter verkettete Listen, Hashtabellen, balancierte Suchbäume, verschiedene heaps und union-find-Strukturen. Weiterhin wird Adaptivität bei Datenstrukturen (wie etwa Splay-Bäume) und bei Algorithmen (wie etwa online-Algorithmen) beleuchtet. Das Zusammenspiel von Algorithmen und Datenstrukturen wird anhand von Geometrie- und Graphenproblemen illustriert. Hierfür werden grundlegende Konzepte der Graphentheorie eingeführt.
LiteraturTh. Ottmann, P.Widmayer: Algorithmen und Datenstrukturen, Spektrum-Verlag, 5. Auflage, Heidelberg, Berlin, Oxford, 2011
252-0209-00LAlgorithms, Probability, and Computing Information 8 KP4V + 2U + 1AE. Welzl, M. Ghaffari, A. Steger, D. Steurer, P. Widmayer
KurzbeschreibungAdvanced design and analysis methods for algorithms and data structures: Random(ized) Search Trees, Point Location, Minimum Cut, Linear Programming, Randomized Algebraic Algorithms (matchings), Probabilistically Checkable Proofs (introduction).
LernzielStudying and understanding of fundamental advanced concepts in algorithms, data structures and complexity theory.
SkriptWill be handed out.
LiteraturIntroduction to Algorithms by T. H. Cormen, C. E. Leiserson, R. L. Rivest;
Randomized Algorithms by R. Motwani und P. Raghavan;
Computational Geometry - Algorithms and Applications by M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf.
263-4110-00LInterdisciplinary Algorithms Lab Information Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 12

Im Masterstudium können zusätzlich zu den Vertiefungsübergreifenden Fächern nur max. 10 KP mit Laboratorien erarbeitet werden. Weitere Labs werden auf dem Beiblatt aufgeführt.
5 KP2PA. Steger, D. Steurer, J. Lengler
KurzbeschreibungIn this course students will develop solutions for algorithmic problems posed by researchers from other fields.
LernzielStudents will learn that in order to tackle algorithmic problems from an interdisciplinary or applied context one needs to combine a solid understanding of algorithmic methodology with insights into the problem at hand to judge which side constraints are essential and which can be loosened.
Voraussetzungen / BesonderesStudents will work in teams. Ideally, skills of team members complement each other.

Interested Bachelor students can apply for participation by sending an email to steger@inf.ethz.ch explaining motivation and transcripts.