Autumn Semester 2020 takes place in a mixed form of online and classroom teaching.
Please read the published information on the individual courses carefully.

Paolo Burlando: Catalogue data in Autumn Semester 2016

Name Prof. Dr. Paolo Burlando
FieldHydrologie und Wasserwirtschaft
Address
Institut für Umweltingenieurwiss.
ETH Zürich, HIL D 22.3
Stefano-Franscini-Platz 5
8093 Zürich
SWITZERLAND
Telephone+41 44 633 38 12
Fax+41 44 633 10 61
E-mailpaolo.burlando@ifu.baug.ethz.ch
DepartmentCivil, Environmental and Geomatic Engineering
RelationshipFull Professor

NumberTitleECTSHoursLecturers
102-0237-00LHydrology II3 credits2GP. Burlando, S. Fatichi
AbstractThe course presents advanced hydrological analyses of rainfall-runoff processes. The course is given in English.
ObjectiveTools for hydrological modelling are discussed at the event and continuous scale. The focus is on the description of physical processes and their modelisation with practical examples.
ContentMonitoring of hydrological systems (point and space monitoring, remote sensing). The use of GIS in hydrology (practical applications). General concepts of watershed modelling. Infiltration. IUH models. Event based rainfall-runoff modelling. Continuous rainfall-runoff models (components and prrocesses). Example of modelling with the PRMS model. Calibration and validation of models. Flood routing (unsteady flow, hydrologic routing, examples). The course contains an extensive semester project.
Lecture notesParts of the script for "Hydrology I" are used. Also available are the overhead transparencies used in the lectures. The semester project consists of a two part instruction manual.
LiteratureAdditional literature is presented during the course.
102-0293-AALHydrology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RP. Burlando
AbstractDiese Lehrveranstaltung führt in die Ingenieur-Hydrologie ein. Zuerst werden Grundlagen zur Beschreibung und Messung hydrologischer Vorgänge (Niederschlag, Rückhalt, Verdunstung, Abfluss, Erosion, Schnee) vermittelt, anschliessend wird in grundlegende mathematische Modelle zur Modellierung einzelner Prozesse und der Niederschlag-Abfluss-Relation eingeführt, inkl. Hochwasser-Analyse.
ObjectiveKenntnis der Grundzüge der Hydrologie. Kennenlernen von Methoden, zur Abschätzung hydrologischer Grössen, die zur Dimensionierung von Wasserbauwerken und für die Nutzung von Wasserresourcen relevant sind.
ContentDer hydrologische Kreislauf: globale Wasserressourcen, Wasserbilanz, räumliche und zeitliche Dimension der hydrologischen Prozesse.

Niederschlag: Niederschlagsmechanismen, Regenmessung, räumliche/zeitliche Verteilung des Regens, Niederschlagsregime, Punktniederschlag/Gebietsniederschlag, Isohyeten, Thiessenpolygon, Extremniederschlag, Dimensionierungsniederschlag.

Interzeption: Messung und Schätzung.

Evaporation und Evapotranspiration: Prozesse, Messung und Schätzung, potentielle und effektive Evapotranspiration, Energiebilanzmethode, empirische Methode.

Infiltration: Messung, Horton-Gleichung, empirische und konzeptionelle Methoden, F-index und Prozentuale Methode, SCS-CN Methode.

Einzugsgebietscharakteristik: Morphologie der Einzugsgebiets, topografische und unterirdische Wasserscheide, hypsometrische Kurve, Gefälle, Dichte des Entwässerungsnetzes.

Oberflächlicher und oberflächennaher Abfluss: Hortonischer Oberflächenabfluss, gesättigter Oberflächenabfluss, Abflussmessung, hydrologische Regimes, Jahresganglinien, Abflussganglinie von Extremereignissen, Abtrennung des Basisabflusses, Direktabfluss, Schneeschmelze, Abflussregimes, Abflussdauerkurve.

Stoffabtrag und Stofftransport: Erosion im Einzugsgebiet, Bodenerosion durch Wasser, Berechnung der Bodenerosion, Grundlagen des Sedimenttransports.

Schnee und Eis: Scnheeeigenschaften und -messungen Schätzung des Scnheeschmelzprozesses durch die Energiebilanzmethode, Abfluss aus Schneeschmelze, Temperatur-Index- und Grad-Tag-Verfahren.

Niederschlag-Abfluss-Modelle (N-A): Grundlagen der N-A Modelle, Lineare Modelle und das Instantaneous Unit Hydrograph (IUH) Konzept, linearer Speicher, Nash Modell.

Hochwasserabschätzung: empirische Formeln, Hochwasserfrequenzanalyse, Regionalisierungtechniken,
indirekte Hochwasserabschätzung mit N-A Modellen, Rational Method.
Lecture notesEin internes Skript ist zur Verfügung (kostenpflichtig, nur Herstellungskosten)

Die Kopie der Folien zur Vorlesung können auf den Webseiten der Professur für Hydrologie und Wasserwirtschaft herunterladen werden
LiteratureChow, V.T., D.R. Maidment und L.W. Mays (1988) Applied Hydrology, New York u.a., McGraw-Hill.
Dingman, S.L., (1994) Physical Hydrology, 2nd ed., Upper Saddle River, N.J., Prentice Hall
Dyck, S. und G. Peschke (1995) Grundlagen der Hydrologie, 3. Aufl., Berlin, Verlag für Bauwesen.
Maniak, U. (1997) Hydrologie und Wasserwirtschaft, eine Einführung für Ingenieure, Springer, Berlin.
Manning, J.C. (1997) Applied Principles of Hydrology, 3. Aufl., Upper Saddle River, N.J., Prentice Hall.
Prerequisites / NoticeVorbereitend zu Hydrologie I sind die Vorlesungen in Statistik. Der Inhalt, der um ein Teil der Übungen zu behandeln und um ein Teil der Vorlesungen zu verstehen notwendig ist, kann zusammengefasst werden, wie hintereinander es beschrieben wird:
Elementare Datenverarbeitung: Hydrologische Messungen und Daten, Datenreduzierung (grafische Darstellungen und numerische Kenngrössen).
Frequenzanalyse: Hydrologische Daten als Zufallsvariabeln, Wiederkehrperiode, Frequenzfaktor, Wahrscheinlichkeitspapier, Anpassen von Wahrscheinlichkeitsverteilungen, parametrische und nicht-parametrische Tests, Parameterschätzung.
102-0293-00LHydrology Information 3 credits2GP. Burlando
AbstractThe course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis.
ObjectiveKnow the main features of engineering hydrology. Apply methods to estimate hydrological variables for dimensioning hydraulic structures and managing water ressources.
ContentDer hydrologische Kreislauf: globale Wasserressourcen, Wasserbilanz, räumliche und zeitliche Dimension der hydrologischen Prozesse.

Niederschlag: Niederschlagsmechanismen, Regenmessung, räumliche/zeitliche Verteilung des Regens, Niederschlagsregime, Punktniederschlag/Gebietsniederschlag, Isohyeten, Thiessenpolygon, Extremniederschlag, Dimensionierungsniederschlag.

Interzeption: Messung und Schätzung.

Evaporation und Evapotranspiration: Prozesse, Messung und Schätzung, potentielle und effektive Evapotranspiration, Energiebilanzmethode, empirische Methode.

Infiltration: Messung, Horton-Gleichung, empirische und konzeptionelle Methoden, F-index und Prozentuale Methode, SCS-CN Methode.

Einzugsgebietscharakteristik: Morphologie der Einzugsgebiets, topografische und unterirdische Wasserscheide, hypsometrische Kurve, Gefälle, Dichte des Entwässerungsnetzes.

Oberflächlicher und oberflächennaher Abfluss: Hortonischer Oberflächenabfluss, gesättigter Oberflächenabfluss, Abflussmessung, hydrologische Regimes, Jahresganglinien, Abflussganglinie von Extremereignissen, Abtrennung des Basisabflusses, Direktabfluss, Schneeschmelze, Abflussregimes, Abflussdauerkurve.

Stoffabtrag und Stofftransport: Erosion im Einzugsgebiet, Bodenerosion durch Wasser, Berechnung der Bodenerosion, Grundlagen des Sedimenttransports.

Schnee und Eis: Scnheeeigenschaften und -messungen Schätzung des Scnheeschmelzprozesses durch die Energiebilanzmethode, Abfluss aus Schneeschmelze, Temperatur-Index- und Grad-Tag-Verfahren.

Niederschlag-Abfluss-Modelle (N-A): Grundlagen der N-A Modelle, Lineare Modelle und das Instantaneous Unit Hydrograph (IUH) Konzept, linearer Speicher, Nash Modell.

Hochwasserabschätzung: empirische Formeln, Hochwasserfrequenzanalyse, Regionalisierungtechniken,
indirekte Hochwasserabschätzung mit N-A Modellen, Rational Method.
Lecture notesEin internes Skript steht zur Verfügung (kostenpflichtig, nur Herstellungskosten)

Die Kopie der Folien zur Vorlesung können auf den Webseiten der Professur für Hydrologie und Wasserwirtschaft herunterladen werden
LiteratureChow, V.T., D.R. Maidment und L.W. Mays (1988) Applied Hydrology, New York u.a., McGraw-Hill.
Dingman, S.L., (1994) Physical Hydrology, 2nd ed., Upper Saddle River, N.J., Prentice Hall
Dyck, S. und G. Peschke (1995) Grundlagen der Hydrologie, 3. Aufl., Berlin, Verlag für Bauwesen.
Maniak, U. (1997) Hydrologie und Wasserwirtschaft, eine Einführung für Ingenieure, Springer, Berlin.
Manning, J.C. (1997) Applied Principles of Hydrology, 3. Aufl., Upper Saddle River, N.J., Prentice Hall.
Prerequisites / NoticeVorbereitende zu Hydrologie I sind die Vorlesungen in Statistik. Der Inhalt, der um ein Teil der Übungen zu behandeln und um ein Teil der Vorlesungen zu verstehen notwendig ist, kann zusammengefasst werden, wie hintereinander es bescrieben wird:
Elementare Datenverarbeitung: Hydrologische Messungen und Daten, Datenreduzierung (grafische Darstellungen und numerische Kenngrössen).
Frequenzanalyse: Hydrologische Daten als Zufallsvariabeln, Wiederkehrperiode, Frequenzfaktor, Wahrscheinlichkeitspapier, Anpassen von Wahrscheinlichkeitsverteilungen, parametrische und nicht-parametrische Tests, Parameterschätzung.
102-0293-99LHydrology Information 3 credits2GP. Burlando
AbstractThe course introduces the students to engineering hydrology. It covers first physical hydrology, that is the description and the measurement of hydrological processes (precipitation, interception, evapotranspiration, runoff, erosion, snow), and it introduces then the basic mathematical models of the single processes and of the rainfall-runoff transformation, thereby including flood analysis.
ObjectiveKnow the main features of engineering hydrology. Apply methods to estimate hydrological variables for dimensioning hydraulic structures and managing water ressources.
ContentDer hydrologische Kreislauf: globale Wasserressourcen, Wasserbilanz, räumliche und zeitliche Dimension der hydrologischen Prozesse.

Niederschlag: Niederschlagsmechanismen, Regenmessung, räumliche/zeitliche Verteilung des Regens, Niederschlagsregime, Punktniederschlag/Gebietsniederschlag, Isohyeten, Thiessenpolygon, Extremniederschlag, Dimensionierungsniederschlag.

Interzeption: Messung und Schätzung.

Evaporation und Evapotranspiration: Prozesse, Messung und Schätzung, potentielle und effektive Evapotranspiration, Energiebilanzmethode, empirische Methode.

Infiltration: Messung, Horton-Gleichung, empirische und konzeptionelle Methoden, F-index und Prozentuale Methode, SCS-CN Methode.

Einzugsgebietscharakteristik: Morphologie der Einzugsgebiets, topografische und unterirdische Wasserscheide, hypsometrische Kurve, Gefälle, Dichte des Entwässerungsnetzes.

Oberflächlicher und oberflächennaher Abfluss: Hortonischer Oberflächenabfluss, gesättigter Oberflächenabfluss, Abflussmessung, hydrologische Regimes, Jahresganglinien, Abflussganglinie von Extremereignissen, Abtrennung des Basisabflusses, Direktabfluss, Schneeschmelze, Abflussregimes, Abflussdauerkurve.

Stoffabtrag und Stofftransport: Erosion im Einzugsgebiet, Bodenerosion durch Wasser, Berechnung der Bodenerosion, Grundlagen des Sedimenttransports.

Schnee und Eis: Scnheeeigenschaften und -messungen Schätzung des Scnheeschmelzprozesses durch die Energiebilanzmethode, Abfluss aus Schneeschmelze, Temperatur-Index- und Grad-Tag-Verfahren.

Niederschlag-Abfluss-Modelle (N-A): Grundlagen der N-A Modelle, Lineare Modelle und das Instantaneous Unit Hydrograph (IUH) Konzept, linearer Speicher, Nash Modell.

Hochwasserabschätzung: empirische Formeln, Hochwasserfrequenzanalyse, Regionalisierungtechniken,
indirekte Hochwasserabschätzung mit N-A Modellen, Rational Method.
Lecture notesEin internes Skript steht zur Verfügung (kostenpflichtig, nur Herstellungskosten)

Die Kopie der Folien zur Vorlesung können auf den Webseiten der Professur für Hydrologie und Wasserwirtschaft herunterladen werden
LiteratureChow, V.T., D.R. Maidment und L.W. Mays (1988) Applied Hydrology, New York u.a., McGraw-Hill.
Dingman, S.L., (1994) Physical Hydrology, 2nd ed., Upper Saddle River, N.J., Prentice Hall
Dyck, S. und G. Peschke (1995) Grundlagen der Hydrologie, 3. Aufl., Berlin, Verlag für Bauwesen.
Maniak, U. (1997) Hydrologie und Wasserwirtschaft, eine Einführung für Ingenieure, Springer, Berlin.
Manning, J.C. (1997) Applied Principles of Hydrology, 3. Aufl., Upper Saddle River, N.J., Prentice Hall.
Prerequisites / NoticeVorbereitende zu Hydrologie I sind die Vorlesungen in Statistik. Der Inhalt, der um ein Teil der Übungen zu behandeln und um ein Teil der Vorlesungen zu verstehen notwendig ist, kann zusammengefasst werden, wie hintereinander es bescrieben wird:
Elementare Datenverarbeitung: Hydrologische Messungen und Daten, Datenreduzierung (grafische Darstellungen und numerische Kenngrössen).
Frequenzanalyse: Hydrologische Daten als Zufallsvariabeln, Wiederkehrperiode, Frequenzfaktor, Wahrscheinlichkeitspapier, Anpassen von Wahrscheinlichkeitsverteilungen, parametrische und nicht-parametrische Tests, Parameterschätzung.
102-0474-AALIntroduction to Water Resources Management
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
6 credits4RP. Burlando
AbstractThe course offers an introduction to the basics of water resources analysis and management covering the topics of water demand vs availability, water exploitation and reservoir design, aquatic physics, water quality and pollution, water conservation and remediation in rivers, lakes and aquifers, sustainable water use.
ObjectiveIntroduction to the basics of water resources management based on physical and chemical processes; principle of sustainability
ContentAquatische Physik: Flusshydraulik, Seehydraulik, Grundwasserhydraulik, Zeitkonstanten und Grössenordnungen, Flussmorphologie und Sedimenttransport.
Wassergüte: Anforderungen, Schadstoffausbreitung, Selbstreinigung, Thermische Belastung, relevante Schadstoffe und Quellen, Stossbelastungen, Zeitkonstanten und Grössenordnungen.
Wasserwirtschaft: Struktur von Dargebot und Nachfrage.
Optionen zur Schliessung der Disparität: Reservoire, Grundwasserspeicher, Überleitungen, Wasserwirtschaftliche Rahmenplanung (Masterplan) , Gewässerschutz, Sanierung und Renaturierung (Oberflächengewässer und Grundwasser), Variabilität, Stochastik und Risiko.
Nachhaltigkeit: Definitionen, Beispiele für nicht-nachhaltiges Wirtschaften, Wasserprobleme der Entwicklungsländer, Wasser und Landwirtschaft, Projektbewertung und Umweltverträglichkeitsprüfung. Ökonomische und Soziologische Bezüge.

Alle Aspekte sollen mit Fallbeispielen illustriert werden.
Die Übungen werden zum grössten Teil auf analytischen Formeln beruhen. Einige Übungen benötigen den Computer.
Lecture notesSkript in wöchentlichen Folgen.
102-0515-01LEnvironmental Engineering Seminars Information Restricted registration - show details 3 credits3SM. Maurer, P. Burlando, I. Hajnsek, S. Hellweg, M. Holzner, P. Molnar, E. Morgenroth, R. Stocker, J. Wang
AbstractThe course is organized in the form of seminars held by the students. Topics selected from the core disciplines of the curriculum (water resources, urban water engineering, material fluxes, waste technology, air polution, earth observation) are discussed in the class on the basis of scientific papers that are illustrated and critically reviewed by the students.
ObjectiveLearn about recent research results in environmental engineering and analyse practical applications in environmental engineering.
118-0101-00LWater Resources Seminars Restricted registration - show details
Number of participants limited to 16.
Automatic admittance given to the MAS students.
3 credits3SP. Molnar, P. Burlando, further speakers
AbstractThe Seminar Series features invited experts from a wide range of disciplines, who will present their experiences working with water related topics in international settings. The students will be exposed to many different perspectives, and will be asked to apply the information they learn to specific case studies.
ObjectiveThe Seminar Series will provide students with background information on the wide range of topics related to water resources. The lectures will challenge the students to evaluate water resources and water resource management in new ways, using tools that have been successfully implemented in real case scenarios. The seminars will include theory, interactive discussions, and the assessment of methodologies. Student participation will be highly encouraged.
ContentThe Seminar Series is aimed at offering students the opportunity to learn about water resources in a multi-disciplinary fashion, with a focus on international examples. Selected topics will include: Water & Sanitation, Urban Water Management, Politics & International Water Management, Water Resources & Agriculture, Water Hazards (floods), Water Resources & Ecosystem Services, Integrated Water Resource Management, and Adaptation to Climate Change. For additional details see the course website http://www.mas-swr.ethz.ch/education/courses/core-courses/water-resources-seminars.html.
Prerequisites / NoticeFor further information, contact the MAS coordinator, Darcy Molnar (darcy.molnar@ifu.baug.ethz.ch)
651-2915-00LSeminar in Hydrology0 credits1SP. Burlando, J. W.  Kirchner, S. Löw, D. Or, C. Schär, M. Schirmer, S. I. Seneviratne, M. Stähli, C. H. Stamm, University lecturers
Abstract
Objective
701-0901-00LETH Week 2016: Challenging Water Restricted registration - show details
All ETH Bachelor`s, Master`s students and exchange students can take part in the ETH week 2016.
Tuition, food and accommodation are free of charge.
1 creditR. Knutti, C. Bratrich, S. Brusoni, P. Burlando, A. Cabello Llamas, G. Folkers, D. Molnar, A. Vaterlaus, B. Wehrli
AbstractThe ETH Week is an innovative one-week course designed to foster critical thinking and creative learning. Students from all departments as well as professors and external experts will work together in interdisciplinary teams. They will develop interventions that could play a role in solving some of our most pressing global challenges. In 2016, ETH Week will focus on the topic of water.
Objective- Domain specific knowledge: Students have immersed knowledge about a certain complex, societal topic which will be selected every year They understand the complex system context of the current topic, by comprehending its scientific, technical, political, social, ecological and economic perspectives. The focus in 2016 is on challenging water systems.

- Analytical skills The ETH Week participants are able to structure complex problems systematically using selected methods. They are able to acquire further knowledge and to critically analyze the knowledge in interdisciplinary groups and with experts and the help of team tutors.

- Design skills: The students are able to use their knowledge and skills to develop concrete approaches for problem solving and decision making to a selected problem statement, critically reflect these approaches, assess their feasibility, to transfer them into a concrete form (physical model, prototypes, strategy paper,...) and to present this work in a creative way (role-plays, videos, exhibitions, etc.).

- Self-competence: The students are able to plan their work effectively, efficiently and autonomously. By considering approaches from different disciplines they are able to make a judgment and form a personal opinion. In exchange with non-academic partners from business, politics, administration, nongovernmental organizations and media they are able to communicate appropriately, present their results professionally and creatively and convince a critical audience.

- Social competence: The students are able to work in multidisciplinary teams, i.e. they can reflect critically their own discipline, debate with students from other disciplines and experts in a critical-constructive and respectful way and can relate their own positions to different intellectual approaches. They can assess how far they are able to actively make a contribution to society by using their personal and professional talents and skills and as "Change Agents".
ContentThe week is mainly about problem solving and design thinking applied to the complex world of water. During ETH Week students will have the opportunity to work in small interdisciplinary groups, allowing them to critically analyze both their own approaches and those of other disciplines, and to integrate these into their work.

While deepening their knowledge about how the food system works, students will be introduced to various methods and tools for generating creative ideas and understand how different people are affected by each part of the system. In addition to lectures and literature, students will acquire knowledge via excursions into the real world, empirical observations, and conversations with researchers and experts

A key attribute of the ETH Week is that students are expected to find their own problem, rather than just solve the problem that has been handed to them.
Therefore, the first three days of the week will concentrate on identifying a problem the individual teams will work on, while the last two days are focused on generating solutions and communicating the team's ideas.

A panel of experts will judge your presentations at the end of the week. The winning teams will receive attractive prizes.
Prerequisites / NoticeNo prerequisites. Program is open to Bachelor and Masters from all ETH Departments. All students must apply through a competitive application process that will open in March 2016 at www.ethz.ch/ETHWeek. Participation is subject to successful selection through this competitive process.